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We introduce a simple, compact two-mirror system for diffuse light concentration. The design principle is
based on local conservation of optical brightness. The system design is flexible, and we are able to compute
mirror shapes given arbitrary incident beam direction and target cross-sectional shape. As illustration, we
showcase our design for flat and cylindrical target geometries, and we also demonstrate that our system is
able to concentrate efficiently along one or two dimensions. We perform numeric experiments that confirm
our theoretical results and provide diffuse light concentration very close to the thermodynamic limit in all
cases we considered. © 2022 Optica Publishing Group
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1. INTRODUCTION

Diffused light concentrators have been considered for solar en-
ergy concentration [1–3], light collection for instruments [4–6]
and efficient light coupling into fiber optics [7]. Ideal concentra-
tion is limited to the thermodynamic limit, which arises from the
conservation of optical brightness [8]. Widely-used concentra-
tors rely on a simple parabolic mirror (PM). The performance of
such a concentrator is worse by factors of 2 or π, for flat and cylin-
drical targets, respectively, in two dimensions, and by a factor of
4 in three dimensions, compared with the thermodynamic limit
[9]. Compound parabolic concentrators (CPCs) are non-imaging
concentrators whose performance can approach the thermody-
namic limit [8]. However, CPCs, when used alone, tend to be
large, as their length-to-width ratio scales as ∼ 1/ sin

(
ε
2
)
, where

ε is the full diffusivity angle of the incident light (for direct solar
light sin(ε) ≈ 0.01).

Concentrators made of curved diffractive optical elements
were shown to provide compact ideal concentration [4]. How-
ever, such systems are limited to quasi-monochromatic radiation
and typically suffer from lower efficiency. Using multi-element
reflective concentrators, it is possible to design compact non-
imaging concentrators [10]. Recently, a reflective three-mirror
system was purposed that approaches the thermodynamic limit
in two dimensions by using a coordinate transformer to spatially
shape the diffusivity of the incident illumination [9]. This sys-
tem is compact, however, the three-mirror system lacks axial
symmetry, and the use of three successive reflections for each
ray introduces losses. In addition, when working as a three-
dimensional concentrator, this design required successive five

mirrors, introducing even higher losses.

In this paper we propose two-mirror concentratores (2MC)
for diffused light that approach the thermodynamic limit. Our
system is compact, axially symmetric, and is suitable to broad-
band light. As two-dimensional concentrators (concentration
along one direction) and for small incoming diffusivities they
achieve ideal concentration at the thermodynamic limit, and
their performance remains close to ideal even for larger dif-
fusivities. When applied as three-dimensional concentrators
(concentration along two directions), concentration close to the
thermodynamic limit is still achieved with only two mirrors. For
simplicity, we assume mirrors with perfect (100%) reflectances.
However, finite mirror reflectances can be readily incorporated
in our design.

This paper is organized as follows: In Section 2 we present a
new analytic design principle for two-mirror diffuse light con-
centrators, based on local conservation of the optical brightness.
We apply it to one-side flat targets in two and three dimensions
and to cylindrical target and study its performance character-
istics and discuss analytic results in Section 3, and conclude in
Section 4.

Throughout the paper we use a somewhat different termi-
nology than several others working in the field. To avoid con-
fusion, here we give a list of concepts that we use in the paper,
with their alternatives, often used by others, written in square
brackets: diffused light concentrator [nonimaging concentrator],
phase-space volume [étendue], (local) conservation of optical
brightness [(local) convervation of étendue], diffusivity [angular
extent].

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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(a) L = 8 f , βmax = 80°, one-side flat target.
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(b) L = 6 f , βmax = 150°, cylindrical target.

Fig. 1. Schematics of 2-mirror concentration (2MC) system setups and notation. On-axis concentration is performed along the y-
direction. Mirror shapes obtained by integrating Eqs. (7) and (11) from β = 0° to βmax for incoming light with uniform intensity
I(y) = constant and uniform diffuse angle and requiring S(β) = cos β for the flat target S(β) ≡ 1 for the cylindrical target.

2. DESIGN

The brightness of a diffuse beam is defined as the encircled
energy divided by (four-dimensional) phase-space volume [2].
Thus in the ray optics picture local brightness can be thought of
as the local phase-space density (PSD) of rays. According to the
thermodynamic limit of brightness conservation, the greatest
PSD of rays at the output of a diffuse light concentrator cannot
be larger than the greatest PSD at the input. If the input beam has
uniform PSD, such as sunlight, the thermodynamic limit implies
that optimal concentration cannot be reached unless the output
beam at the target has uniform PSD too [11]. Conventional fo-
cusing elements such as a PM lead to highly nonuniform PSDs
in their focal region. This can be intuitively understood if we
consider that light cones hitting a PM farther from its symmetry
axis travel a larger distance to the focus and expand to larger
spot sizes than light cones that travel closer to the optical axis.
This property of PMs thus limit their concentration performance
to well below the thermodynamic limit [9]. We propose to over-
come this limitation by a two-mirror system that manipulates
the incoming diffuse illumination so that light cones hitting the
second mirror farther from the target become narrower than
light cones hitting the second mirror closer to the target, and
exactly compensate for the increased distance, so as to form a fo-
cal spot with the minimum size allowed by the thermodynamic
limit. The principle that enables us to manipulate local diffusiv-
ities along the beam cross-section is local conservation of PSD
[2, 4]. Previously, we proposed a three-mirror concentrator [9]
that consists of a cascade of two mirrors performing an optical
coordinate transformation and an additional parabolic mirror
that performs focusing. In the present paper we improve that
design to consist only of two mirrors which together perform the
combined task of coordinate transformation and concentration.
As will be shown below, our design leads to a device which,
when illuminated with an input beam with uniform PSD, leads
to a uniform PSD of rays on the target, and thus achieves optimal

concentration at the thermodynamic limit.
The schematics of our “two-dimensional” design (concen-

tration along a single axis) are shown in Fig. 1a for a one-side
flat target, and Fig. 1b for a cylindrical target (e.g., sunlight on
a pipe). The optical axis is x̂ and concentration is performed
on the xy-plane onto a target centered around (0, 0). Note that
Fig. 1b shows a so-called “inverting” design where rays originat-
ing from the top of mirror 1 hit the bottom of mirror 2 and vice
versa. We chose this geometry for the cylindrical target, because
it leads to significantly less shadowing by mirror 2 compared
with the “non-inverting” design (Fig. 1a).

The two-mirror system performs an intensity transformation
[12] from the incident beam to the output beam I(y) → S(β),
where β(y) is the desired angular incident direction to the target
(chosen in Section 3 to ensure maximal concentration for a given
target geometry). The shapes of the two mirrors are now analyt-
ically calculated via ray tracing to provide this transformation
and to focus the central incoming rays onto the center of the
target (0, 0). The incident beam direction ~Kin is chosen a priori.
For an on-axis design, as illustrated in Fig. 1, ~Kin = (−1, 0). Let
(x, y) and (x′, y′) be the positions on the mirrors. Initially, for
an incident ray at y = 0, we set x = −L, x′ = f and y = y′ = 0,
where the given constants L and f are the distance from the focal
point to the first mirror and the focal distance of the second mir-
ror, respectively. The intermediate and outgoing ray directions
are then

~Kint =
1
R (x′ − x, y′ − y) , (1)

~Kout = − 1
r (x′, y′) , (2)

with R = |(x, y)− (x′, y′)| and r = |(x′, y′)| . The mirrors’ nor-
mals are dictated by the law of reflection:
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~n1 = ~Kint − ~Kin =

(
x′ − x

R
+ 1,

y′ − y
R

)
, (3)

~n2 = ~Kout − ~Kint = −
(

x′

r
+

x′ − x
R

,
y′

r
+

y′ − y
R

)
. (4)

By Fermat’s principle it follows that −x + R + r ≡ const, i.e. the
path lengths travelled by the different rays and focused to the
same point are the same constant, and that constant must be
2L + 2 f (the distance travelled by the y ≡ 0 ray). The slope of
the first mirror can be written as:

dx
dy

= −
(~n1)y

(~n1)x
= − y′ − y

x′ − x + R
= − y′ − y

x′ − r + 2L + 2 f
, (5)

and, by writing (x′, y′) = r(cos β, sin β), we arrive at the differ-
ential equation:

dx
dy

=
y− r sin β

r cos β− r + 2L + 2 f
. (6)

The desired angular intensity distribution S(β) should match
the Lambertian reflectance of the target to ensure local conserva-
tion of optical brightness. For a flat target we get S(β) = cos β
and for a cylindrical target S ≡ 1 [9]. Using the local energy con-
servation, viz. dy I(y) = dβ S(β), solve for y(β) and substitute
it into Eq. (6), yielding:

dx(β)

dβ
=

dy(β)

dβ

y(β)− r(β) sin β

r(β)(cos β− 1) + 2L + 2 f
, (7)

where we made explicit the fact that r is a function of β.
Similarly, the slope of the second mirror becomes

dx′

dy′
= −

(~n2)y

(~n2)x
= − (r + R) sin β− y

(r + R) cos β− x

=
y− (r + R) sin β

(r + R)(cos β− 1) + 2L + 2 f
. (8)

Take the derivative of x′ and y′ with respect to β:

dx′

dβ
=

dr
dβ

cos β− r sin β ,
dy′

dβ
=

dr
dβ

sin β + r cos β , (9)

and substitute the above into the left-hand side of Eq. (8), yield-
ing

dr
dβ − r tan β

dr
dβ tan β + r

=
y− (r + R) sin β

(r + R)(cos β− 1) + 2L + 2 f
. (10)

Simplifying and noting again the explicit dependence on β pro-
duces the differential equation

dr(β)

dβ
= r(β)

(r(β) + d) sin β− y(β) cos β

(r(β) + d) cos β + y(β) sin β− r(β)− R
, (11)

with d = R− 2 f − 2L.
Eqs. (7) and (11) couple the shape of mirror 1, x(β), to the

shape of mirror 2, r(β), and are integrated numerically from
β = 0° to a chosen βmax for given L, f , S(β), and I(y).

PM 2MC

Fig. 2. Phase-space hit plot, concentration along one dimen-
sion, ε = 0.01. Flat target, L = 20 f , βmax = 80°. The computed
2MC target length is 0.2 f . y is the normalised position on the
flat target (such that y = 0 is at the center of the flat target and
y = 1 is at one of the edges), γ is the angle between the target’s
normal and the incident ray.

Fig. 3. Focal region of flat target, concentration along one di-
mension, L = 20 f , βmax = 85°, ε = 0.01. Shown are extreme
incoming edge rays, with incidence angle of + ε

2 (red) and − ε
2

(blue). (inset) Ray traces for the PM with βmax = 45°, with
optimal target shown in black (note, the inset has a different
βmax compared to Fig. 2, as large βmax admit far larger caustics
which are hard to visualize).

3. RESULTS

A. Concentration Along One Dimension: Flat Target
We first consider two-dimensional concentration on a one-side
flat target (elongated along z) as in Fig. 1a with S(β) = cos β and
βmax < 90°. We assume an incoming light with uniform inten-
sity I(y) = constant and uniform diffuse angle and numerically
integrate Eqs. (7) and (11) for on-axis geometry to obtain the mir-
ror shapes. We performed Monte Carlo ray-tracing simulations
to compute the concentration performance and quantitatively
compare our 2-mirror concentrator (2MC) to the single parabolic
mirror (PM). The simulations were performed by ray tracing a
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Fig. 4. Normalized concentration ratio NCR for concentra-
tion along one dimension on a flat target with L = 20 f as
a function of the maximal angular incident direction to the
target βmax, for different values of the incoming diffusive an-
gle ε. PM is an analytic plot of sin β cos β for the NCR of the
parabolic mirror.
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Fig. 5. Intensity distribution for concentration along one di-
mension on a flat target, L = 20 f , ε = 0.01.

large number of rays (8192), randomly oriented with the incident
angle uniformly distributed on [− ε

2 ,+ ε
2 ].

Fig. 2 presents the calculated phase space diagram of all rays
hitting the target. As seen, The 2MC generates uniform distri-
bution of rays both in position and in angle, enabling optimal
concentration, whereas the PM produces a highly non-uniform
phase-space distribution of rays with a long tails, that prevent
optimal concentration.

An image of the caustics of the 2MC at the vicinity of the
geometrical focal point, Fig. 3, was generated by tracing only the
extreme incoming edge rays, with incidence angle of + ε

2 (red)
and − ε

2 (blue). While the caustics of the 2MC trace the edges
of the flat target (satisfying the so-called “edge ray principle”
[2]), the caustics produced by the PM (inset) admit significant
deviations.

Next, we evaluate the minimal target size A needed to contain
all concentrated rays. The non-zero diffusivity of the incident
illumination induces a small spatial shift of the optimal target
position from the theoretic focal point. To find the optimal tar-
get shift, we perform ray-tracing simulations and numerical
gradient descent optimization. The optimal shift, possibly orig-
inating from field curvature, is found to be a small fraction of
the target size and grows quadratically with ε. From the tar-
get size A and the lateral size of the incoming beam D we find
the concentration ratio CR = D

A and the normalized concentra-

PM 2MC

Fig. 6. Phase-space hit plot, concentration along one dimen-
sion on an optimal cylindrical target, L = 50 f , βmax = 160°,
ε = 0.01. The computed radius of the 2MC target is 0.0505 f . θ
is the position on the cylindrical target, γ is the angle between
the target’s normal and the incident ray. Note that the optimal
target sizes differ between the 2MC and the PM. Also note that
θ = 0 points in the +x̂ direction for the 2MC and in the −x̂ di-
rection for the PM, that is θ = 0 always aligns with βmax = 0.

tion ratio NCR = CR/CR∞, where the thermodynamic limit for
diffuse light concentration is CR∞ = 1

sin( ε/2 ) , i.e. for small ε,

CR∞ ≈ 1
ε/2 .

Fig. 4 presents NCR as a function of βmax for several values
of ε for our 2MC and the single PM concentrators. While a single
PM reaches only 50% of the thermodynamic limit for any value
of ε [9], our 2MC design reaches a near ideal NCR of 0.96 at
βmax = 88° for small incoming diffusivity ε = 0.001 and only
slightly worse at larger values up to ε = 0.03. The near ideal
concentration of the 2MC is also manifested in the calculated
intensity distributions on the target, presented in Fig. 5. As seen,
the 2MC generates flat intensity distribution nearly identical to
the ideal concentration (dashed line) whereas the PM generates
nonuniform distributions exceeding the ideal target size by a
factor of 2 for its optimal βmax = 45° and by even more at larger
value of βmax.

The “non-inverting” 2MC with L = 20 f and at βmax = 89°
produces about 21.8% shadowing for the on-axis design. We
applied our design method to several additional configuration
of 2-mirror concentration onto a flat target. We obtained very
similar results to those presented in this section for other values
of L/f and also for an off-axis 2-mirror configuration where
shadowing is completely avoided.

B. Concentration Along One Dimension: Cylindrical Target
Next, we apply our design to a cylindrical target elongated
along z (for example, sunlight concentrated onto a water pipe)
as in Fig. 1b with S(β) = 1 and βmax < 180°. We assume
again incoming light with uniform intensity I(y) = constant
and uniform diffuse angle and numerically integrate Eqs. (7)
and (11) for on-axis geometry to obtain the mirror shapes.

Fig. 6 presents the calculated phase space diagram of all rays
hitting the cylindrical target. As seen, The 2MC generates the
desired near-uniform distribution of rays both in position and
in angle, compared with the highly non-uniform distribution of
the PM.
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Fig. 7. Focal region of 2MC setup for cylindrical target, concen-
tration along one dimension, L = 50 f , βmax = 165°, ε = 0.01.
Shown are extreme incoming edge rays, with incidence an-
gle of + ε

2 (red) and − ε
2 (blue). (inset) Ray traces for the PM

with βmax = 90°, with optimal target in gray (note, the βmax
is different in the inset compared to Fig. 6, for visualization
purposes).

A caustics image generated by ray tracing the extreme rays,
displayed in Fig. 7, indicate near perfect concentration by our
2MC system, while the caustic image for the PM (inset) shows
significant aberrations that impair the performance of the PM
concentrator for the same target.

The calculated normalized concentration of our 2MC system,
compared to that of the PM concentrator, is presented in Fig. 8.
As seen NCR reaches for our 2MC 0.937 at βmax = 172.5° for
small incoming diffusivity ε = 0.001 and slightly lower for
ε = 0.03, whereas the PM reached a maximal NCR = 1

π at
βmax = 90°. The generated “inverting” 2-mirror system with
L = 50 f and at βmax = 170° results in 8.6% shadowing for the
on-axis design. We obtained similar results for other values of
L/f and also for the off-axis configuration where shadowing is
completely suppressed.

C. Concentration Along Two Dimensions: Flat Circular Target
Due to its symmetry around the incidence plane (the xy plane
which contains the incidence vector ~Kin), our on-axis design
naturally applies also to three-dimensional concentrators by
simply replacing y with radius in cylindrical symmetry and
testing it with 3D ray tracing. In the three-dimensional case, the
theoretical concentration performance limit of the PM is NCR =
1
4 of the thermodynamic limit, both for a flat and ball target [9].
Our 2MC design achieves NCR = 0.91 for L = 20 f , βmax = 80°
on a flat circular target, see Fig. 9. The shadowing produced
by the “non-inverting” and “inverting” designs are 2.6% and
0.3%, respectively. We believe that the cylindrical symmetry
of our design is an important factor in reducing the impact of
skew rays [4, 8] on the system’s performance. This enables us
to achieve good three-dimensional concentration performance,
greatly surpassing the performance of our previous design [9].
The good performance of the 2MC system when concentrating
along two dimensions may be attributed to axial symmetry
as well as the fact that rays always travel an almost constant
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Fig. 8. Normalized concentration ratio NCR for concentration
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tion of the maximal angular incident direction to the target
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Fig. 9. Normalized concentration ratio NCR for concentration
along two dimensions on a circular flat target, L = 20 f , ε =
0.01. PM are analytic plots of sin2 β cos2 β for parabolic mirror.

distance inside the 2-mirror system, see Fig. 10.

4. DISCUSSION AND CONCLUSION

We presented a new design for a compact two-mirror system
for diffuse light concentration. We numerically analyzed the
performance of this system, and demonstrated two-dimensional
concentration approaching the thermodynamic limit for both
flat and cylindrical targets for small incoming diffusivity ε and
excellent performance also in three dimensional concentration
where the deleterious effect of skew rays is reduced by our
symmetric and compact design.

As ε increases, the optimal target position shifts slightly away
from the focal centre. We employ numeric gradient descent to
find a locally optimal shift, which in some cases significantly
improves the performance even for large ε. The length of our
2MC system is comparable to the incident beam’s lateral size D
(as seen in Fig. 1) and is independent of ε, in contrast to a CPC
whose length scales as D/ε making it much shorter for small ε
(such as direct solar light).

Our design principle is simple, analytic and flexible and can
be extended to additional target shapes and geometry, off-axis
configuration to alleviate shadowing effects, diffuse light sources
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at finite distances or with nonuniform intensity and diffusivity.
It is interesting to compare our design with existing com-

pact concentrator designs, such as the multi-element reflec-
tive/refractive concentrators [10]. Both our design and [10] have
similar length-to-width ratios, similar performances (approach-
ing ideal concentration at small ε and reduced performance as
ε increases), high total transmission, minimal number of reflec-
tions, and no contact with the receiver. However, while [10]
relies on the edge ray principle [1] yielding rather complex cal-
culations of the aspheric optical surfaces, our design uses the
central rays together with local conservation of brightness which
provides simpler, more intuitive and more flexible designs.

Since our design provides local conservation of optical bright-
ness, optical reciprocity ensures that our ideal 2MC system onto
some target shape can be used in reverse as an ideal collima-
tor for diffuse light sources of the same shapes. Such an ideal
collimator will preserve the brightness of the source upon colli-
mation and moreover will generate uniform intensity and dif-
fusivity. The design can be readily generalized for any desired
nonuniform intensity or diffusivity of the collimated beam.

Finally, we note that although our design imposes local con-
servation of brightness by only considering the path of the cen-
tral rays without explicitly constraining the other rays, it does
provide imaging conditions of the diffuse source (i.e. all rays
emerging from any point on the diffuse source are focused onto
a single point on the flat target). This intriguing result is closely
related to the aplanatic conditions for aberration-free imaging
[13] which emerges from the local conservation of brightness [3],
and paves the way for numerous applications for our design for
imaging systems free of first-order aberrations.
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