Author’s Version

High-Performance Elliptical Cone Tracing

U. Emre' , A. Kanak 1

and S. Steinberg !

1University of Waterloo, Canada

Figure 1: The performance characteristics of cone traversal change with the cone’s size. We visualize the count of internal nodes visited
while traversing a BVH with cones of varying aperture as heatmaps (log scale). With thin cones, costs are split between traversal and
primitive intersection, but as the cone aperture grows the traversal is dominated by traversing very many internal nodes. Appearance of
rings in the heatmaps is attributed to a heuristic we introduce to fast track traversal when a cone contains an entire subtree of a BVH
described in Section 4.2. Clockwise from top left scenes are kitchen, staircase and sponza.

Abstract

In this work, we discuss elliptical cone traversal in scenes that employ typical triangular meshes. We derive accurate and
numerically-stable intersection tests for an elliptical conic frustum with an AABB, plane, edge and a triangle, and analyze the
performance of elliptical cone tracing when using different acceleration data structures: SAH-based K-d trees, BVHs as well
as a modern 8-wide BVH variant adapted for cone tracing, and compare with ray tracing. In addition, several cone traversal
algorithms are analyzed, and we develop novel heuristics and optimizations that give better performance than previous traversal
approaches. The results highlight the difference in performance characteristics between rays and cones, and serve to guide the
design of acceleration data structures for applications that employ cone tracing.

CCS Concepts
» Computing methodologies — Ray tracing;

1. Introduction

Varieties of cone tracing have been used in computer graph-
ics for several purposes, for example, global illumination
[DBK10, HHK*07], soft shadows [ORMO7], acoustics simula-
tions [SRK*09], and furry object rendering [QCH*14]. By pro-
viding well-defined non-singular intersection regions, cones al-
low high-quality anti-aliasing for texture filtering. Cone tracing
has also been proposed for wave-optical rendering and RF simula-
tions [SRB*24]. Because cones are inherently able to sample zero-
measure features like Dirac delta interactions—e.g., caustics in a
unidirectional path tracer or edges for UTD in RF simulations—
they provide a more general sampling primitive than rays.

Our motivating application for this work is wave-optical render-

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

ing [SP25] where elliptical cones are used as envelopes for wave-
optical beams. However, the discussion in this work is kept as gen-
eral as possible. Contributions in this work are not limited to ellip-
tical cone-tracing but also apply to circular cone-tracing. Our con-
tributions may be useful to a variety of cone-tracing applications
such as applications described in [QCH* 14, HHK*07, DBK10].

The performance characteristics of a cone tracing workload dif-
fer from its ray counterpart (demonstrated in Table 1, Table 2). The
costs of intersecting primitives and traversing the internal nodes of
an acceleration data structure are considerably different between
the workloads. Furthermore, these costs, and their ratio—which is
important for SAH-based acceleration data structures—are affected
by the cone’s shape. This means that acceleration data structures


https://orcid.org/0009-0004-2801-0726
https://orcid.org/0009-0009-9646-8129
https://orcid.org/0000-0003-2748-4036

20f11 U. Emre & A. Kanak & S. Steinberg / High-Performance Elliptical Cone Tracing

constructed for ray tracing, and ray-tracing focused traversal ap-
proaches, are not necessarily optimal for cone tracing: for exam-
ple, structures that produce a tighter bounding box fit, like bound-
ing volume hierarchies (BVHs), tend to perform considerably bet-
ter for cone tracing. Furthermore, we also show that some traversal
heuristics that are deemed too costly for ray tracing are beneficial
for cone tracing.

Several practical challenges and questions in designing high-
performance cone tracing algorithms remain insufficiently ad-
dressed: First, to our knowledge, no intersection tests for ellipti-
cal cones that compute accurate intersection range (nearest and far-
thest) or intersection points have been published. Boolean tests are
insufficient for several applications, where the distance to the inter-
section and intersection points are needed (for example, sampling
edges for UTD for acoustics or RF simulations). Second, analy-
sis of acceleration data structures performance has been limited to
simplified cases, e.g., ignoring cone—triangle intersections [ WK20],
however this ignores the important performance characteristics of
different acceleration data structures and traversal heuristics. In
addition, modern high-performance BVH implementations often
have a higher branching factor—admitting multiple children per
node—enabling substantially greater performance through vector-
ization [FLP*17]. Such wide BVHs have not been adapted to cone
tracing.

Our motivation is robust, accurate cone tracing, with arbitrary
triangular meshes, including a mix of very small and very large
triangles—which may become numerically challenging for cone—
primitive intersection tests. The contributions in this paper are:

(a) We derive intersection tests for elliptic conic frusta with AABBs,
edges, planes and triangles. Our definition of an elliptic conic
frustum (see Section 3) and the intersection tests are designed
to remain numerically stable for cones of arbitrary opening half-
angles, including very narrow and degenerate cones, which arise
in practical applications. In fact, our definition generalizes both
elliptical and cylindrical frusta as well as rays.

(b) We analyze the performance of cone tracing with a SAH-based
K-d tree and BVH, and analyze a few BVH traversal heuristics.

(c) We adapt an 8-wide BVH for cone tracing, analyze its perfor-
mance and study a few traversal heuristics.

In this work we target 32-bit IEEE-754 floating points for their per-
formance, and focus on CPU-based workloads; targeting GPUs is
left for future work.

2. Related Work

The design of acceleration data structures for cone tracing, and per-
formance analysis of these data structures under cone tracing work-
loads has received much less attention. Previous work in this area
performed such analysis in simplified settings: where leaf traversal
is ignored [WK20]; or only K-d trees are considered [ORMO7].

Cone-triangle, cone—edge and cone-box intersection tests have
been developed for various applications [Hel97, SW10,Ebeb,Ebea].
However, those tests were not designed for the more general case of
conic frusta, which are more challenging and they are not numer-
ically stable for small cone opening half-angles or the degenerate

»

T
|
|
vz

Figure 2: An elliptic conic frustum (illustrated in green)
parametrized by origin 0, directrix d (i.e., its mean direction of
propagation), initial major axis length xo, and near and far clip
planes znear and Zfar- The cone’s local frame is defined such that
x,y align with the major and minor axes of the elliptical cross sec-
tion, +z aligns with d, and the origin is at o.

case of an elliptical frustum. Further, all are simpler Boolean tests
that determine whether an intersection has occurred, but they do
not return further information about the geometry of the intersected
area. All the above requirements are needed for some applications.

Bounding volume hierarchies (BVHs) with a branching factor
higher than 2 [WBBOS] are often used today. Such wide BVHs en-
able fast vectorized traversal [FLP*17], and optionally make use
of compressed nodes [YKL17, BWWA18] for further acceleration.
Previous work in this area has focused on ray traversal; we extend
such wide BVHs to cone tracing.

Cone tracing was also discussed as a more general rendering ap-
proach [Amag84], for example for anti-aliasing. Ray cones methods
are used to estimate the filtering footprint, e.g., for texture filtering
or selecting shading level-of-detail [AMCB*21,BCAM21].

3. An Elliptic Conic Frustum

We define and parametrize an elliptic conic frustum as follows: Let
0 denote its base center point, xo > 0 its initial major axis length
(major axis length at the base ellipse), d denotes the cone directrix,
i.e. direction of propagation, o > 0 is the half-angle of the cone, and
€ € 10, 1) is the elliptical cone’s eccentricity, with e = 0 parameter-
izing an isotropic cone and € = 1 a degenerate flat conic frustum,
where the minor axis length is always zero. For convenience we
also define the ratio between the major and minor axis lengths as

major 1

e= — = —.
minor /1 — €2

We choose this parameterization because it allows working with
elliptical conic frusta with very small half-angles o in a numerically
stable manner. This includes the degenerate cases where ot = 0 (i.e.,
the cone apex is at 0o). Our definition of an elliptic conic frustum
then generalizes elliptical and cylindrical frusta (ot = 0), as well
as rays (o0 = x9 = 0), both of which do arise in practice in many
applications. All of our intersection tests are designed to work with
these degenerate cases and remain stable for tiny or vanishing o.

6]

It is often useful to restrict the half-frustum above to a proper
frustum via a pair of cutting planes at znear > 0 and zg,r > 0, termed

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



U. Emre & A. Kanak & S. Steinberg / High-Performance Elliptical Cone Tracing

the near and far clip planes, respectively (defined in the cone’s lo-
cal frame, such that z = 0 is the origin 0). See Fig. 2 for an illus-
tration. For example, 6 can be understood as the cone’s sourcing
point (e.g., a point on a light source), znin is then chosen to avoid
a self intersection with the source, and zg,, is the (potentially infi-
nite) search distance. Finally, a point [x,y,z], given in local frame,
is defined to be inside the elliptical cone if and only if:

2 2.2 2
X" +e7y” < (ztano+xp) and 7 € [znear, Zfar) - (2)
We often work in the cone’s local frame, defined such that the
x,y,z axes align with the elliptical cone’s major axis, minor axis
and directrix d, respectively, and the origin is at 0.

3.1. Intersection Tests

We now introduce our intersection tests. These tests compute the
closest and farthest intersection points, if intersection occurs. In-
tersection distance is defined as the z distance from 6 to the point
where the cone’s flat cross section intersects the primitive, i.e. the
distance projected upon the direction d, and not the radial distance.
All intersection tests take a user-supplied range parameter ("rng"
in the pseudo-code listings) that clips the cone to z € [znear, Zfar|, @S
described above.

For brevity the code listings are kept concise; in practice, we
use additional early rejection/acceptance queries in some of these
tests, which are omitted in paper, please check the accompanying
released C++ code. At times, simplified Boolean tests that avoid
computing the intersection points are also useful, and can be con-
siderably faster. We provide such Boolean versions of our tests in
our accompanying code.

3.1.1. Elliptical Cone-Plane Intersection

The intersection test with a plane returns the intersection dis-
tance range over which intersection occurs, as well as the closest
and farthest intersection points (the farthest may be at infinity).

Let a plane be parameterized by its normal 1 and distance from
origin d, yielding the plane equation p- i = d. Assume that i, d are
given in (or are transformed to) the cone’s local frame. Let P be a
point on the cone’s envelope (where the equality in Eq. (2) holds):

(ztanoi+xp) cos @
p= é(ztanoctho)sin(p , 3)
z

where @ is an angle on the xy cross-sectional plane. Plugging the
above into the plane equation and solving for z yields:

. cos
d—x0n~u . - 1 .(P
I=——5 5, with i= |-sing|. @)
tanon-u+ng € 0

We are interested in points p where z is an extremum, therefore we
dz _ . .

solve for a6 = 0, which yields

nx

1
Ly . )

L
\/ni+e 2| 0

Corresponding z;  are calculated using Eq. (4).

ﬁ172 =4

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

3of 11
I|def isect_cone_plane (cone, fi, d, rng):
2 transform i, d to local cone frame
3
4 # cross sectional intersection position
= 1 1
5 u = \/",%TT'{%[M’?"%O]
6 if isNaN(u): u=0
7
8 Zapex = —OQ
9 if x0>0 and o> 0: zapex = —t;?a
10
11 # intersection candidates
12 212 = (dFxn-d)/(Ltanon-t+n;)
13 if z1 <Zgpex Oor isNaN(zy): z3 =00
14 if 72 < zgpex or isNaN(z) : z2 =00
15 Pi2 = H(ziptano+xp)i+zy22
16
17 if z1 > 20
18 swap (z1,22)
19 swap (P1,p2)
20
21 # clamp intersection points to rng
22 if z; <rng.near:
23 Z] = rng.near
24 Pp1 = compute arbitrary point on plane
— (A,d) at z=17z inside the cone
25 # (similarly clamp zp,p» to z=rng.far)
26
27 return { .range=Range(z;,z2), .nearest=pi,
— .farthest=p, }
Listing 1: Elliptical cone—plane intersection test.
When n? + e_2n§ is tiny or vanishing, care should be taken to

avoid NaNs in @i 5: in this case we may set tij > to an arbitrary
value as the plane is effectively perpendicular to d and intersects
the elliptical cone at a constant z. This is stable: in these cases %
dominates in Eq. (4), and this is indeed the distance to the (almost)
perpendicular plane. No intersection occurs when z is 200 or when
z is NaN (meaning the plane straddles the cone envelope, but no
plane point is strictly inside the cone).

Using the computed ii; > and z1 2, we may compute the candi-
date intersection points pj 2. We classify the points, compute the
intersection range, and clamp the points to rng, depending on the
type of conic section that arises on intersection. See Listing 1.

3.1.2. Elliptical Cone-Edge Intersection

The intersection of an elliptical cone and an edge (i.e., a line
segment) returns the closest and farthest intersection points, if any.
Let the edge be parameterized by two points 5,5 (assumed to be
transformed to the cone’s local frame), and we define T=b-3a
Then, the equation

(ax +110)* + &% (ay +11y)? = [(az + 1l tano + x> (6)

defines a quadratic equation in ¢ for the intersection points, and it
is easy to solve for 71 5. We use compensated sums to compute the
quadratic coefficients and numerically stable expressions for the
quadratic roots.

To clamp the intersections to the conic frustum’s clip planes, note
that if the line @ + 1 intersects the cone at 2 points, then valid in-
tersection points with the clip planes may only happen between the



4of 11

1|def isect_cone_edge (cone, a, B, rng) :

2 transform a, b to local cone frame

3 T=b-3

4 Zapex = —OQ

5 if x0>0 and o> 0: zapex = —t::a

6

7 i, = roots of
o (ax+th)* + e (ay +1ly)? = [(a; +tl) tan 0+ x0]?,
— otherwise oo

8

9 # discard candidates fj» behind cone

10 if a;+tl; <zapex: ) = 00

11 if a;+tl; <Zapex: B = 00

12 if fl; > tl;: swap (t,h)

13

14 # clamp to rng

15 if a;+tnl, <rng.near or a;+tl; >rng.far or
—  11=00:

16 return 0

17 if rng.near>zppex and a;+tl; <rng.near:

18 1 = intersect a4+t with Z=rng.near

19 if a;+tl; >rng.far:

20 f = intersect @+t with z=rng.far

21

2 P2 = 5+l112T if 112 €1[0,1], otherwise oo

23 if (B1): > (B2):: swap (P1,P2)

24 return { .range=Range((Pi)z(P2);), .nearest=pi,
— .farthest=p, }

Listing 2: Elliptical cone—edge intersection test.

2 line intersections with the cone. If the line intersects the cone
at a single point (implying that second point is at +o00), then the
edge might intersect the clip planes only after this point. This is
expressed succinctly in Listing 2. This test is trivially extended to
a line as well.

3.1.3. Elliptical Cone-~AABB Intersection

This intersection test is used for acceleration data structure
traversal, and returns the intersection distance range over which the
elliptical cone intersects the AABB. Either the closest or farthest in-
tersection point must be one of: an AABB vertex; the intersection
of the elliptical conic frustum with an AABB’s edge; or the inter-
section of the elliptical conic frustum with a face. See Listing 3 for
a pseudocode.

A few optimizations are made: An early rejection can be made if
the projected distances of all AABB vertices do not overlap the
conic frustum (line 10 in Listing 3). If the closest and farthest
AABB vertices are contained in the conic frustum, then we may
skip the edge and face tests (lines 16-18). Edges whose vertices
are both inside the cone do not need to be tested (line 22). Test-
ing if a cone—plane intersection point is contained in the AABB is
done by transforming the point back to world space, and check-
ing if its coordinates that are orthogonal to the face’s normal are
in the AABB (this is done as we do not need to check the coor-
dinate along the normal and keeps the test stable). We also AVX?2
vectorize the transformation and cone—vertex tests (lines 2-18). We
found that manual vectorization yields a significant performance
improvement compared with the compiler generated code (gcc 14).

For many of our results, we only need a simpler Boolean cone—

U. Emre & A. Kanak & S. Steinberg / High-Performance Elliptical Cone Tracing

1|def isect_cone_aabb (cone, aabb, rng):

2 transform aabb to local cone frame

3

4 V = aabb.verts # AABB vertices

5 # AABB vertices that are inside the cone

6 C = {VEcone | VEV}

7

8 possible = rng N Range (minyeyv;, max,ecy v;)

9 # fast reject

10 if possible = @: return 0

11

12 ret = Range (UygcVvz) # range that contains

— the points v;
13 if 6 € aabb:
14 ret U= Range(0,0) # add origin to the
< range

15 # fast accept

16 if ((argmin,cyv;) € cone or 6 € aabb)

17 and (argmax,cyv;) € cone:

18 return ret

19

20 # test AABB edges

21 for (ﬁ,B) in aabb.edges:

2 if a¢C or bgcC

23 ret U= Range (isect_cone_edge (cone,
— & b))

24

25 # test AABB faces

26 for face in aabb.faces:

27 pintr = isect_cone_plane (cone, face,

— rng)

28 if pintr.nearest&face:

29 ret.add(pintr.nearest)

30 if pintr.farthest€&face:

31 ret.add (pintr.farthest)

32

33 return ret N possible

Listing 3: Elliptical cone—AABB intersection test.

AABB intersection test for traversal. We make the Boolean test
available in our released code. To accelerate the Boolean test, a
conservative approximation is made: the expensive cone—face tests
can be avoided by growing the tested range by the AABB’s extent
projected upon the cone directrix. Care needs to be taken to avoid
growing the range past the cone’s apex point. Although this approx-
imation sometimes indicates that there is an intersection when the
exact test does not, we show in Section 4.1 that for BVH traversal,
the benefits from more efficient Boolean tests outweighs the slight
increase in node traversal from the approximation. Other minor op-
timizations are also made for the simplified Boolean test, see our
accompanying code.

3.1.4. Elliptical Cone-Triangle Intersection

This intersection test returns the closest and farthest intersection
points, if any, and is summarized in Listing 4. Several cases—
illustrated in Fig. 3—are considered in order such that the cheaper
cases are evaluated first:

1. Case 1: the triangle’s nearest or farthest vertex is inside the el-
liptical conic frustum.

2. Case 2: the triangle contains the nearest or farthest cone—plane
intersection point. This intersection point can be on the cone’s
cross section (case 2a) or a clip plane (case 2b).

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



U. Emre & A. Kanak & S. Steinberg / High-Performance Elliptical Cone Tracing

Sof 11

x"\ Az

17p1,y ne

v /

\ A

z
>
>

K Pplane

Y&

AY ‘A\ AT

v AN

HZ

Pplane

T T
> >
» >

Case 1. nearest ver-
tex is in cone.

Case 2a. cone—plane intersection is on the
cross section and inside the triangle.

Case 2b. cone-plane intersection at the
near plane and inside the triangle.

Case 3. otherwise, nearest intersection, if
any, must be an edge intersection.

Figure 3: Illustrations of intersection configurations for an elliptical conic frustum with a triangle. The conic frustum is illustrated in green,
triangle in blue, and the near and far clip planes using dashed black lines. Red crosses mark the nearest intersection points. The farthest

intersection point is handled similarly.

5’ B’ EI ﬁ’

transform &,b,¢,A to local cone frame

if all_points_out_of_range (&, b, ¢, rng) :
return None

def isect_cone_tri(cone, rng) :

[< KV N VO SR

# case 1: closest/farthest vertices is in

— cone

Poear = argminvevvz

Prar = argmax, cy vz

has_near = Ppear Econe

has_far = Ppear Econe

if has_near and has_far:
return { .nearest=ppear, -.farthest=pg, }

# case 2: cone-plane intersection

pintr isect_cone_plane (cone, fi, fi-a, rng)

if not has_near and pintr.nearest&triangle:
Prear = pintr.nearest
has_near true

if not has_far and pintr.farthest&triangle:
Prr = pintr.farthest
has_far true

if has_near and has_far:
return { .nearest=pnear,

.farthest=pg }

# case 3: intersects edge or no
— intersection exists
if not has_near: Ppear = 0O
if not has_far: P = —00
for each triangle edge (4,V):
if U E€cone and VEcone: continue
eintr isect_cone_edge (cone, U, V)
if (Pnear);>Range (eintr) .min
Pnear = eintr.nearest
if (Prr);<Range (eintr) .max
Prathest = eintr.farthest

26
27
28
29
30
31
32
33
34
35
36

return { .nearest=pPpear, -farthest=pg: }

Listing 4: Elliptical cone—triangle intersection test.

Case 3: otherwise, nearest or farthest intersection point must be
the (nearest or farthest) cone-edge intersection point, if any; oth-
erwise no intersection with the triangle exists.

The numeric stability of this test depends on the numeric stabil-
ity of the invoked cone—plane and cone—edge intersections tests, as
well as the point-in-triangle test. Consider the case where a narrow
cone (very small half-angle o) intersects a shared edge between
a pair of adjacent triangles, with the edge being very much larger
than the cone’s cross section. In this case the cone—edge test (case

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

ray distance (m) cone a =10 distance (m) difference (m) (log scale)

Figure 4: We test the numerical stability and robustness of cone—
triangle intersection by visualizing the distance to closest inter-
section point for tiny cones with o. = 107%° compared with rays.
Cones always intersect the surface at a distance that is equal or
less compared with a corresponding ray, though the difference is
very small except at object silhouettes.

3) might incorrectly fail due to insufficient precision. However, the
cone—plane intersection points for both triangles would essentially
be the same points. Therefore, as long as the point-in-triangle test
is watertight, at least one of the triangles will be correctly detected
as being intersected.

We tested cones with tiny half-angles by numerically checking
that a cone traversal returns a closer nearest intersection distance
compared with ray traversal, for random cones in several scenes;
see the visualization in Fig. 4.

4. Acceleration Data Structures

We analyze the performance of tracing elliptical cones with several
acceleration data structures (ADS), and discuss several different
traversal heuristics. We do not focus on any particular application,
but aim to provide a general analysis of the performance of ellip-
tical cones given different ADSs and traversal configurations. Real
applications will likely to want to perform additional steps: for ex-
ample, for the rendering soft shadows the relative cross-sectional
area that is intersected by primitives would be computed, while
for RF simulations intersected edges would be classified. Our an-
alyzed ADSs are: a typical SAH-based K-d tree [WHO06] and a
BVH [GS87]. We also adapt a modern, vectorized 8-wide BVH for
cone tracing. All our tests were run on an AMD Ryzen™ Thread-
ripper™ PRO 5975WX.

Performance metrics for several scenes are given in Table 1 for
primary rays and primary cones with a variety of cone half-angles
o. The time per primary ray and primary cones of varying half-
angles is visualized in Fig. 7, highlighting that smaller cones (< 5°
cone o) favour our implementation of the 8-wide BVH, while larger



60f 11 U. Emre & A. Kanak & S. Steinberg / High-Performance Elliptical Cone Tracing

e bike e box e  kitchen e sponza
o kdtree s bVR s bVHBW
. . 304
s0{e
354 ¢
.
30]e 25 e
.
25 20 201,
>
© 20 15
- 15
15
10 10
10 .
.
g . .
0s ] . + 054® . H . o| %1 :
: . o
D e e ] R ——— . e 0
0.0
10 sec x10- sec 10 sec
1248 124 {3
.
o 10
u‘\ 1.0 3
.
O os 08
-
.
X os 06 2
Il osle 04 .
5] . 1
02 1Y 021e 4 4 * M .
. . ] 3 3 ] H
0 . o - e oo . o o ol & $ $ $
x10~* sec %10~ sec x10-° sec
. 14 D
16 o
l44e 12
. s{e
o 121% 10
—
4
L .
=} °81e
Il os 06 :
B oele Lo
04 \
0.4 \g o ®
. . . . o
s : 02 e | S
02 S ¢+ . M . . ]
10+ sec x10- sec 10 sec
a54® 204 Q
175
a0 181®
35 16 1.50
o
50 14 125 . .
o . . ) . > .
P 124, 100
20 s 10 :
5] . of 075{e
.
15 08 ® °
. . o N 050
10 06 >. 3 s ]
3 . . o . : ] . s
05 * . - | o4 3 ° © 025 . . .
107 sec 107 sec 103 sec
275
2s{, . . . . . R .
250
8
2.0 225 . . °
. o
° 200 s
015 . . .
. . o| 175
I . .
150
10 . . . . . 4
125
P o . gt 8
. .
. . . . o 100 N H
. . .
Lg . . . o| 075 . . . . . .

0.01 01 1 10 100 0.01 01 1 10 100 0.01 01 1 10 100
intersection cost intersection cost intersection cost

Figure 5: Average time to trace a cone as a function of the primitive
intersection-to-traversal cost ratio parameter. Larger cone aper-
tures perform better with shallower ADSs.

cones (> 5° cone o) favour our implementation of the BVH. The
performance of secondary cones of random eccentricity is also ex-
plored in Table 2. Additional figures analyzing performance char-
acteristics of secondary cones is included in our supplemental doc-
ument. The conclusions regarding the performance of the traversal
heuristics discussed in this paper and the differences between the
ADSs explored in this paper remain the same for secondary cones.

Construction SAH-based ADSs construction makes use of traver-
sal cost and primitive intersection cost constants during construc-
tion. In Fig. 5 we compare traversal performance with different ra-
tios of these cost constants. For ray tracing, a traversal-to-primitive-
intersection cost ratio of roughly 1 is usually optimal, and for small
cones this remains a performant choice, enabling mixed workloads
(ray and cone tracing) with a single ADS—useful for many ap-
plications. However, for larger cones this ratio becomes subopti-

a=1x1075° a=0.1° a=5°

-- Lf

Figure 6: Heatmaps (log scale) of revisited triangle count in a K-d
tree traversal. The count of revisited triangles increases with cone
angle similar to the count of intersected triangles. Revisited trian-
gles constitute a considerable wasted effort in K-d tree traversal.

1

mal: larger cones benefit from shallower ADSs, as they traverse
a greater part of the tree. Deciding on an optimal cost ratio de-
pends on the targeted workload. We used a traversal-to-primitive-
intersection cost ratio of 1 in all our results.

Traversal Under a CPU ray-tracing workload K-d trees often out-
perform binary BVHs. For small cones this trend continues to hold.
Finding the intersection of a ray with the splitting plane is very
cheap, driving fast ray traversal. Similarly, intersecting a cone with
the splitting plane is a cheaper traversal step compared to the inter-
sections of a cone with AABBs when traversing a BVH.

For larger cones we see BVHs significantly outperform K-d trees
which can be attributed to the following: (i) a cone may inter-
sect multiple primitives, a dynamically-allocated data structure (or
mailboxing [APB87, AW*87]) is used to keep track of which trian-
gles we have encountered, saving on repeated very expensive cone—
triangle intersection tests (see Fig. 6). This is not needed for a BVH,
as a BVH is an object partitioning scheme. And most importantly,
(i) BVHs provide a tighter bounding box fit for the leaf nodes, re-
ducing the number of tested triangles. This result contradicts Wiche
et al. [WK20]: because they ignore the expensive cone—triangle in-
tersection costs and only consider traversal.

Shadow Queries We also test cone shadow queries (Boolean tests
that stop as soon as a cone—triangle hit is found along the search
range), see Fig. 8. The usefulness of such queries is highly ap-
plication dependent. As expected, with larger cones the shadow
queries are relatively much faster. This is because full queries be-
come more expensive as cone size grows while partial intersections
can be found earlier in large cones. The 8-wide BVH and K-d tree
see the greatest speedup for larger cones as they traverse internal
nodes faster.

4.1. BVH Traversal Heuristics

When traversing BVH nodes with a cone, the order of traversing
the child nodes of an interior node can be determined in several
ways:

1. By computing the exact nearest cone—AABB intersection point
using the full, expensive test (Section 3.1.3).

2. Instead of using the full test, the simpler and more efficient
Boolean test introduced in Section 3.1.3 can be used for traver-
sal, while child ordering is done via one of the following approx-
imative distances to the AABB:

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



U. Emre & A. Kanak & S. Steinberg / High-Performance Elliptical Cone Tracing

7of 11

bike box kitchen sponza
cone O us nodes tris us nodes tris ‘ us nodes tris us nodes tris
ray 322 44.0 253 1.48 154 10.6 2.98 34.0 24.8 3.99 51.5 313
N 1075° 12.5 47.2 31.0 5.81 19.5 11.9 11.5 394 29.4 13.5 54.1 342
£ 0.1° 19.5 50.2 47.5 15.8 28.9 38.2 339 50.3 88.4 19.2 57.9 46.7
= 0.5° 77.8 70.9 198 129 122 349 276 152 795 55.1 80.1 129
5° 6.04K 136K 12.1K | 13.7K 6.12K 22.6K | 247K 6.14K 46.7K | 2.31K 1.06K 451K
" 15° 80.8K 11.6K 109K | 57.2K 219K 81.7K | 243K 460K 354K | 209K 6.94K 31.3K
% ray 4.66 25.2 11.7 1.72 9.17 2.48 332 20.4 3.58 5.95 39.0 3.95
E, 1075° 13.6 335 18.4 4.15 11.0 3.24 10.5 29.5 10.6 20.7 63.1 16.8
g = 0.1° 18.3 37.4 25.2 10.1 20.1 12.7 22.0 432 28.3 25.7 68.0 21.7
= © 0.5° 42.1 59.6 62.6 42.1 71.3 59.7 84.1 114 113 49.0 95.1 51.9
= 5° 1.08K 445 628 1.38K 637 543 2.18K 956 1.07K 714 650 636
15° 134K 1.67K 223K | 5.55K 316 277 177K 2.86K 3.26K | 4.12K 194K 1.96K
ray 1.37 10.0 11.1 AT7 3.37 2.49 .701 7.61 3.58 1.04 15.6 5.10
5 1075° 3.16 9.06 13.5 1.22 391 3.24 1.69 7.80 5.26 2.05 13.8 5.35
% 0.1° 6.45 11.0 24.0 4.49 7.45 14.7 11.2 15.1 38.2 4.24 15.9 11.5
z 0.5° 334 27.7 126 333 34.7 118 112 91.8 456 19.9 29.4 61.1
5° 249K 130K 8.52K | 281K 1.59K 790K | 7.63K 5.72K 349K 945 632 2.99K
15° 264K 112K 727K | 447K 738 3.85K | 62.0K 41.0K 258K | 7.13K 4.06K 21.6K

Table 1: Mean time, nodes visited and triangles intersected per traversed primary cone or ray for different ADSs and several scenes.

o kdtree bvh o bvh8w
bike box kitchen sponza
__ 107 > 107t > ry
wn 10 102
2 1ot . 102 P, [] .
[ L] 102 d . o
c . 10 10 (]
O 103 3
9] 10
b} 10+ y, 10 : o ~ 107*
Q o« . 10-5 * * 3 3 t )
Qs ° ° ° & 10-5 ° . o 107%
IS L] ° L] .
k= : ° ° 10 : ° 0], ° 10640 ° i
10-¢
ray 10~ 107* 10~* 10-2 10"' 10° 10' ray 10 107* 10-3 1072 10"! 10° 10! ray 107> 107* 103 1072 10"! 10° 10' ray 107> 107* 10* 1072 10"! 10° 10'
cone a (°) cone a (°) cone a (°) cone a (°)

Figure 7: Mean time per traversed primary cone or ray for different ADSs and several scenes visualized from Table 1. Smaller cones (< 5°
cone o) favour our implementation of the 8-wide BVH, while larger cones (> 5° cone o) favour our implementation of the BVH.

a. the ray-AABB intersection distance, where the ray is the
cone directrix ?1; or

b. the distance to the AABB midpoint, projected upon the cone
directrix.

Measurements of the performance of these three traversal ordering
schemes are shown in Fig. 9. As expected, the number of visited
BVH nodes and triangles is usually reduced with the exact cone—
AABB test (though this is scene dependent), however this is offset-
ted by significantly more expensive traversal cost. In practice, using
one of the approximate distance heuristics almost always makes for
a considerably faster traversal. In the rest of our results we use the
cone directrix-to-AABB distance heuristic (2a above).

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4.2. BVH Contained Subtree Traversal

Another useful heuristic for cone tracing is checking if a BVH’s
internal node is fully contained within a cone during traversal. This
applies both to the binary BVH and the 8-wide BVH. Testing if a
bounding box is contained within the cone is done via testing if all
8 box vertices are within the cone using a single vectorized test.
Every node stores a pointer to the list of all triangles within the
node’s subtree. Once we detect that a node (and its subtree) is fully
contained in a cone, we ignore child nodes and proceed to compute
the intersection ranges with all the subtree triangles. As we know
that all the triangles within that subtree are fully contained in the
cone as well, expensive full cone—triangle intersection tests are not



8of 11 U. Emre & A. Kanak & S. Steinberg / High-Performance Elliptical Cone Tracing
bike box kitchen sponza

cone O us nodes tris us nodes tris ‘ us nodes tris us nodes tris
ray 2.39 27.6 13.1 1.70 16.4 12.4 2.05 18.6 11.4 3.07 335 19.8
N 1075° 8.27 29.6 15.1 6.05 20.0 11.8 6.67 20.4 12.4 11.0 35.6 23.5
= 0.1° 12.2 31.1 23.0 7.00 20.7 13.6 10.9 22.1 20.9 13.0 36.9 27.5
= 0.5° 63.8 44.5 125 14.5 25.7 28.4 50.5 349 106 26.2 44.5 53.8

5° 4.27K 735 6.23K 399 222 710 2.72K 659 4.78K 618 314 1.14K

" 15° 36.6K 497K 447K | 3.11K 135K 477K | 229K 4.58K 34.6K | 480K 179K 7.23K
% ray 3.33 17.0 4.44 1.67 8.70 2.50 2.36 11.2 2.85 5.57 323 3.47
o) 1075° 13.5 26.2 11.1 5.50 10.8 4.65 8.77 16.5 6.64 24.7 53.2 15.7
= < 0.1° 15.7 28.1 13.8 6.06 11.4 5.20 10.5 18.0 8.58 26.4 54.7 17.3
§ © 0.5° 28.6 39.5 29.3 8.93 14.8 8.82 19.1 26.3 19.1 34.6 62.6 26.0
& 5° 568 227 263 58.4 67.4 57.0 228 133 146 195 208 187
15° 5.70K 776 928 248 180 155 1.52K 425 487 903 604 620
ray 1.00 6.70 4.72 478 3.79 2.60 714 4.18 2.99 1.10 12.7 4.79
1075° 1.92 6.54 4.96 1.25 4.15 3.18 1.52 4.27 3.46 1.94 11.7 442
?E 0.1° 7.37 10.1 24.5 1.82 4.61 4.88 4.10 5.87 11.7 3.23 12.8 7.99
2 0.5° 552 38.2 196 6.65 8.39 21.5 37.7 27.6 140 14.4 21.8 48.5

5° 264K 146K 9.15K 234 162 802 1.92K 1.30K 8.08K 445 340 1.73K

15° 152K 7.00K 447K | 1.13K 722 372K | 109K 7.65K 478K | 244K 1.76K 9.61K

Table 2: Mean time, nodes visited and triangles intersected per traversed secondary cone or ray for different ADSs and a couple of scenes.
Secondary cones have randomly selected eccentricity: the displayed cone o indicates the total solid angle of the cone.

needed. Finding the intersection range with each triangle simplifies
considerably to finding the closest and farthest triangle vertices,
which is also done in an AVX?2 vectorized manner.

This proposed subtree traversal solves the accelerator-in-a-
cone problem highlighted by Wiche et al. [WK20]. Measurements
of performance with and without this optimization are given in
Fig. 10. We use this optimization for BVHs and 8-wide BVHs in all
our results. The effects of subtree traversal are visualized in Fig. 1,
where we plot the count of traversed internal nodes as heatmaps:
the rings that arise visualize where subtree traversal serves to re-
duce the count of nodes that need to be traversed.

4.3. 8-Wide BVH

We construct an 8-wide BVH from the binary SAH-based BVH
by collapsing every 3 levels into one, in similar manner to Fuet-
terling et al. [FLP*17]. Nodes in the 8-wide BVH store the full 8
AABBS in a vectorized form, and loading of the nodes and traversal
is AVX2-accelerated for fast vectorized traversal. We also experi-
mented with compressing the 8-wide nodes using 8-bit or 16-bit
quantization, however even with fast vectorized AVX2 decompres-
sion this proves to be a performance loss (suggesting that traversal
performance is ALU limited and not memory bound, at least for
primary rays). This is likely to change on a modern GPU.

With ray tracing 8-wide BVH traversal is performed via vector-
ized ray—AABB cluster intersection. Vectorizing the significantly
more complex full cone~AABB intersection test is cumbersome,
due to branching, and is unlikely to yield a meaningful performance
boost. Furthermore, just as with the binary BVH, we prefer to avoid
doing the full cone~AABB test, and instead employ a faster heuris-
tic for traversal: We perform a vectorized ray—AABB cluster inter-

section test that conservatively approximates the cone—AABB clus-
ter test by enlarging the AABBs by the cone’s cross-sectional size,
see Fig. 12 for an illustration. Pseudocode is given in Listing 5.
This works well when the cone half-angle o is not too large.

With the optimization above, the cone traversal performance of
the 8-wide BVH is very good. For smaller cones (< 0.5° cone o)
the 8-wide BVH spends a much larger fraction of traversal time
on traversing leafs and running expensive cone-triangle intersec-
tion tests compared to other ADSs, see Fig. 13. However, this frac-
tion decreases following the trend in the degradation of the 8-wide
BVH’s relative performance for larger cones. We attribute this to
the wasted effort caused by false positives arising from our conser-
vative cone—AABB cluster intersection test worsening with larger
cones. To minimize the impact of these false positives, with re-
spect to wasted cone—triangle intersections in particular, we tried
employing a heuristic where we perform an accurate cone—AABB
Boolean intersection test whenever we start traversing a leaf node.
As expected, there is a performance increase (varying by scene) for
larger cones where many cone—triangle intersections are avoided,
see Fig. 11. However, the overhead of a cone—~AABB test per leaf
contributes to a slowdown for smaller cones. We do not use this
heuristic in our results.

The final heuristic addresses child traversal order. In a wide
BVH, child nodes are often either visited in a fixed order, e.g. in an
octant-based fashion [YKL17], or by sorting based on hit distance.
Previous work targeting ray-tracing workloads [YKL17, FLP*17]
favored a fixed traversal order as the sorting expense was deemed
unfavorable. However, as leaf traversal with cone tracing is expen-
sive, we find that performing a simple insertion sort of the (up to)
8 intersected child nodes based on hit distance (computed via the

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



U. Emre & A. Kanak & S. Steinberg / High-Performance Elliptical Cone Tracing 9of 11

BN non-shadow B shadow

kdtree bvh bvh8w

x107¢ sec x107¢ sec x1076 sec

ray

1 1 1 I I

0 J
X107 sec x107* sec x107° sec
2.00 2.00 2.00

175 175 175
1.50 1.50 1.50
125 125 125
1.00 1.00 1.00

1x1075°

0.75 075 0.75

o=
°
I
3
°
I
3

0.50

0.00 0.00 0.00
x107* sec X107 sec X104 sec
25 25 2.5
2.0 2.0 20

15 15 15

0.5 0.5 I I 05
0.0 0.0 0.0

O w0t ene® ga® L s W pot

a=0.5°

aene® on®®
Figure 8: Shadow cone queries compared with full cone queries. As
expected, with greater cone apertures shadow queries get compar-
atively faster as they can terminate earlier while the full queries be-
come more expensive; and, ADSs that are able to spend less time on
traversal (K-d tree, 8-wide BVH) benefit more, compared to ADSs
that are more bound by traversal costs (BVH).

conservative ray—AABB cluster intersection test outlined above)
gives a performance benefit.

5. Future Work

Future research could explore cone tracing on the GPU, the use of
oriented bounding boxes in acceleration data structures and addi-
tional traversal optimizations/heuristics for cones with very large
half-opening angles.

6. Conclusion

This work aims to fill the gaps missing in published work, condense
knowledge, and analyze best practices regarding practical cone
tracing with triangular meshes. We presented intersection tests of
elliptical conic frusta with planes, edges, AABBs and triangles. Our
supplemental material includes C++ source code for these intersec-
tion tests, as well as additional experiments and performance data.
We also discussed acceleration data structures, traversal heuristics
as well as a wide BVH designed for cone tracing workloads. Our
results serve to demonstrate the difference in performance charac-
teristics between cones with different aperture sizes and rays across
several ADSs; as well as guide the selection of a suitable ADS for
a cone tracing application.

Acknowledgements
We would like to thank Matt Pharr for invaluable discussion, input

and comments for this work.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

I exact distance I approximate distance W AABB midpoint
time per cone nodes per cone tris per cone

X107 sec x10* x10*

1x1075°

o=

X107 sec

a=0.1°

5o

o por et et ont® v pot

50

0
o ok por

xe®

el o2

50°

Figure 9: Average time, count of nodes visited, and triangles tested
per cone traversal with a binary BVH. Compared is the exact
cone-to-child node distance (blue) against two approximations: ray
(cone directrix)-to-node distance (orange), and origin-to-midpoint
distance (green). The exact distance heuristic enables traversing
less nodes and triangles, but is not worth the significant additional
cost of a full cone—AABB intersection test.

References

[Ama84] AMANATIDES J.: Ray tracing with cones. Comput. Graph.
(ACM) 18, 3 (July 1984), 129-135. 2

[AMCB*21] AKENINE-MOLLER T., CRASSIN C., BOKSANSKY J.,
BELCOUR L., PANTELEEV A., WRIGHT O.: Improved shader and tex-
ture level of detail using ray cones. Journal of Computer Graphics Tech-
niques Vol 10, 1 (2021), 12-18. 2

[APB87] ARNALDI B., PRIOL T., BOUATOUCH K.: A new space subdi-
vision method for ray tracing csg modelled scenes. The Visual Computer
3(1987), 98-108. doi:10.1007/BF02153666. 6

[AW*87] AMANATIDES J., WOO A., ET AL.: A fast voxel traversal
algorithm for ray tracing. In Eurographics (1987), vol. 87, pp. 3-10.
doi:10.2312/egtp.19871000. 6

[BCAM21] BOKSANSKY J., CRASSIN C., AKENINE-MOLLER T.: Re-
fraction ray cones for texture level of detail. Ray Tracing Gems II: Next
Generation Real-Time Rendering with DXR, Vulkan, and OptiX (2021),
115-125. 2

[BWWA18] BENTHIN C., WALD L., WooP S., AFRA A. T.
Compressed-leaf bounding volume hierarchies. In Proceedings of
the Conference on High-Performance Graphics (New York, NY, USA,
2018), HPG ’18, Association for Computing Machinery. doi:10.
1145/3231578.3231581.2

[DBK10] DUVENHAGE B., BOUATOUCH K., KOURIE D.: Exploring
the use of glossy light volumes for interactive global illumination. In
Proceedings of the 7th International Conference on Computer Graphics,
Virtual Reality, Visualisation and Interaction in Africa (New York, NY,
USA, 2010), AFRIGRAPH ’10, Association for Computing Machinery,
p. 139-148. doi:10.1145/1811158.1811181. 1

[Ebea] EBERLY D.: Intersection of a box and a cone or cone frustum.


https://doi.org/10.1007/BF02153666
https://doi.org/10.2312/egtp.19871000
https://doi.org/10.1145/3231578.3231581
https://doi.org/10.1145/3231578.3231581
https://doi.org/10.1145/1811158.1811181

10of 11

B no heuristic I contained subtree traversal heuristic

bvh bvh8w

x1075 sec

x107° sec

a=1x10"5°°

(]

Il
(o}

o ok

j%e % 0
P O \4\@\9 s

oof et gon®

Figure 10: Average time per cone traversal in a binary BVH and
8-wide BVH. Comparison is made for time spent with (orange) and
without (blue) the contained subtree traversal heuristic. Checking
if each node is fully contained adds a small overhead that can
slow cone traversal down for very tiny cones, but for larger cones
where many nodes are contained there is a significant speedup from
avoiding intersection tests.

https://www.geometrictools.com/Documentation/
IntersectionBoxCone.pdf. Updated: September 11, 2020. 2

[Ebeb] EBERLY D.: Intersection of a triangle and a cone.
https://geometrictools.com/Documentation/
IntersectionTriangleCone.pdf. Updated: March 2, 2008. 2

[FLP*17] FUETTERLING V., LOJEWSKI C., PFREUNDT F.-J.,
HAMANN B., EBERT A.: Accelerated single ray tracing for wide
vector units. In Proceedings of High Performance Graphics (New York,
NY, USA, July 2017), ACM. doi:10.1145/3105762.3105785.
2,8

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of object hier-
archies for ray tracing. IEEE Computer Graphics and Applications 7, 5
(1987), 14-20. doi1:10.1109/MCG.1987.276983. 5

[Hel97] HELD M.: Erit—a collection of efficient and reliable intersection
tests. Journal of Graphics Tools 2, 4 (1997), 25-44. doi:10.1080/
10867651.1997.10487482. 2

[HHK*07] HERzOG R., HAVRAN V., KINUWAKI S., MYSZKOWSKI
K., SEIDEL H.-P.: Global Illumination using Photon Ray Splatting .
Computer Graphics Forum (2007). doi:10.1111/3.1467-8659.
2007.01073.x. 1

[ORMO7] OVERBECK R., RAMAMOORTHI R., MARK W. R.: A real-
time beam tracer with application to exact soft shadows. In Proceedings
of the 18th Eurographics conference on Rendering Techniques (2007),
pp. 85-98. doi:10.2312/EGWR/EGSR07/085-098. 1,2

[QCH*14] QIN H., CHAI M., HoU Q., REN Z., ZHOU K.: Cone trac-
ing for furry object rendering. IEEE Transactions on Visualization and
Computer Graphics 20, 8 (2014), 1178-1188. doi:10.1109/TVCG.
2013.270. 1

[SP25] STEINBERG S., PHARR M.: Wave tracing: Generalizing the path
integral to wave optics, 2025. URL: https://arxiv.org/abs/
2508.17386,arXiv:2508.17386. 1

U. Emre & A. Kanak & S. Steinberg / High-Performance Elliptical Cone Tracing

B no heuristic

I cone-AABB before leaf traversal

time per cone

tris per cone

x107% sec x10*
o
—
o
o
(@)
Il
o}
o
—
o
Il
]
X103 sec © x10
35
7
3.0
6
s 2.5
o
LN 2.0
Il 4
o) 3 15
N 1.0
1 05
0 0.0
Ea R R A ok w0t e gon?®

Figure 11: Comparison of doing a cone-AABB test before travers-
ing leafs in the 8-wide BVH (orange) and without the extra cone-
AABB test (blue). For larger cones this heuristic avoids doing a sig-
nificant number of cone-triangle intersections, which gives a per-
formance benefit as cone size increases. However, the overhead of a
cone-AABB test per leaf makes this a performance loss for smaller
cones in most cases.

[SRB*24] STEINBERG S., RAMAMOORTHI R., BITTERLI B., D’EON
E., YAN L.-Q., PHARR M.: A generalized ray formulation for wave-
optical light transport. ACM Trans. Graph. 43, 6 (Nov. 2024). doi:
10.1145/3687902. 1

[SRK*09] ScuMITZ A., RIcK T., KAROLSKI T., KUHLEN T. W.,
KOBBELT L.: Simulation of radio wave propagation by beam trac-
ing. In EGPGV@ Eurographics (2009), pp. 17-24. doi:http:
//dx.doi.org/10.2312/EGPGV/EGPGV09/017-024. 1

[SW10] SEVILLA D., WACHSMUTH D.: Polynomial integration on
regions defined by a triangle and a conic. In Proceedings of the
2010 International Symposium on Symbolic and Algebraic Computation
(New York, NY, USA, July 2010), ACM. doi:10.1145/1837934.
1837968. 2

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid of packets
- efficient SIMD single-ray traversal using multi-branching BVHs -. In
2008 IEEE Symposium on Interactive Ray Tracing (Aug. 2008), IEEE.
doi:10.1109/RT.2008.4634620.2

[WHO6] WALD I., HAVRAN V.: On building fast kd-trees for ray tracing,
and on doing that in o(n log n). In 2006 IEEE Symposium on Interac-

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.


https://www.geometrictools.com/Documentation/IntersectionBoxCone.pdf
https://www.geometrictools.com/Documentation/IntersectionBoxCone.pdf
https://geometrictools.com/Documentation/IntersectionTriangleCone.pdf
https://geometrictools.com/Documentation/IntersectionTriangleCone.pdf
https://doi.org/10.1145/3105762.3105785
https://doi.org/10.1109/MCG.1987.276983
https://doi.org/10.1080/10867651.1997.10487482
https://doi.org/10.1080/10867651.1997.10487482
https://doi.org/10.1111/j.1467-8659.2007.01073.x
https://doi.org/10.1111/j.1467-8659.2007.01073.x
https://doi.org/10.2312/EGWR/EGSR07/085-098
https://doi.org/10.1109/TVCG.2013.270
https://doi.org/10.1109/TVCG.2013.270
https://arxiv.org/abs/2508.17386
https://arxiv.org/abs/2508.17386
http://arxiv.org/abs/2508.17386
https://doi.org/10.1145/3687902
https://doi.org/10.1145/3687902
https://doi.org/http://dx.doi.org/10.2312/EGPGV/EGPGV09/017-024
https://doi.org/http://dx.doi.org/10.2312/EGPGV/EGPGV09/017-024
https://doi.org/10.1145/1837934.1837968
https://doi.org/10.1145/1837934.1837968
https://doi.org/10.1109/RT.2008.4634620

U. Emre & A. Kanak & S. Steinberg / High-Performance Elliptical Cone Tracing

A\

3
-’E()I P ‘O[ < v > .
> d
tmin
74\

I« d gl

Figure 12: Elliptical cone—-AABB intersection for 8-wide BVH is
done via a conservative ray-AABB intersection with the AABB en-
larged by the cone’s maximal cross section size x. Dashed lines
indicate accurate cone—AABB intersection range, while the nearest
point (red cross) computed with this test serves a conservative ap-
proximation.

I|def isect_cone_aabb_8w(cone, aabbs, max_dist):
2 # 0 - cone origin, d - cone directrix
3 invdx = setl_ps(d%)
4 minx = sub_ps (aabbs.minx, setl_ps (oy))
5 maxx = sub_ps (aabbs.maxx, setl_ps(ox))
6 ax = blendv_ps (minx, maxx, invdx)
7 bx = blendv_ps (minx, maxx, -invdx)
8 # repeat all of the above for y and z...
9
10 # d-b is farthest z from 6 of all AABBs
11 zdist = fmadd_ps (dx, bx, fmadd_ps(dy, by,
— mul_ps(dz, bz)))
12 # greatest cone cross-section size
13 s = fmadd_ps(zdist, setl_ps (tanQ),
— setl_ps(xp))
14
15 # enlarge AABBs and ray-—-AABBs cluster
— intersection
16 enlrx = blendv_ps (s, -s, invdx)
17 ax = sub_ps(ax, enlrx)
18 bx = add_ps (bx, enlrx)
19 ux = mul_ps(ax, invdx)
20 vx = mul_ps (bx, invdx)
21 # repeat all of the above for y and z...
22
23 fmin = Max_ps (max_ps (setl_ps(0), ux),
— max_ps(uy, uz))
24 tmax = min_ps (vx, min_ps(vy, vz))
25 test = and_ps (cmp_ps (fmins fmax, LE_OQ) ,
— cmp_ps (tmin, Setl_ps (max_dist),LT_0Q))
26 return { .results = test, .dists = fyin }

Listing 5: Vectorized elliptical cone—-AABB 8-wide cluster intersec-
tion test. The struct ’aabbs’ contains the vectorized coordinates of
the AABBs’ min and max vertices.

tive Ray Tracing (Sept. 2006), IEEE, p. 61-69. doi:10.1109/rt.
2006.280216. 5

[WK20] WICHE R., KURI D.: Performance evaluation of accel-
eration structures for cone-tracing traversal.  Journal of Computer
Graphics Techniques Vol 9, 1 (2020). URL: https://jcgt.org/
published/0009/01/01/.2,6,8

[YKL17] YLITIE H., KARRAS T., LAINE S.: Efficient incoherent ray
traversal on gpus through compressed wide bvhs. In Proceedings of
High Performance Graphics (New York, NY, USA, 2017), HPG ’17,
Association for Computing Machinery. doi:10.1145/3105762.
3105773.2,8

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

11of 11

B triangle intersections time fraction WM processing contained triangles time fraction

kdtree bvh bvh8w
45% 45% 45%
40% 40% 40%
35% 35% 35%
30% 30% 30%

25% 25% 25%
20% 20% 20%

ray

15% 15%
10%

0%
35%

30% 30% 30%

25% 25% 25%

20% 20% 20%

1x1075°

15% 15% 15%

10% 10% 10%

o

a=0.5°

5%

0%

14%

0.1°

(o4

0.5%

0.0% 0.0%

0.20% 0.20%
0.18% 0.18%
0.15% 0.15%

0.12% 0.12%

5o

|| 010% 0.10%

B 0.07% 0.07%
0.05% 0.05%

0.03% 0.03%

0.00% 0.00%

0.30% 0.30% 0.30%
0.25% 0.25% 0.25%

o 020% 0.20% 0.20%

n

™~ 015% 0.15% 0.15%

o=

0.10% 0.10%

0.05% 0.05%

0.00% === _____EEEN_ (o0
ke pot ane® gon®® ok ot ene® oon?® o pot ene® gon?®

By
Figure 13: Relative time spent doing triangle intersections tests
or determining intersection range for triangles in the case of
contained subtree traversals (as described in Section 4.2) when
traversing an ADS. The 8-wide BVH is considerably faster at
traversing internal ADS nodes, and often spends less time doing
so for rays and small cones. However, for large cones 8-wide BVH
traversal visits significantly more nodes as shown in Table 1 which
explains why it spends less relative time on triangles during traver-
sal.


https://doi.org/10.1109/rt.2006.280216
https://doi.org/10.1109/rt.2006.280216
https://jcgt.org/published/0009/01/01/
https://jcgt.org/published/0009/01/01/
https://doi.org/10.1145/3105762.3105773
https://doi.org/10.1145/3105762.3105773

