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Figure 1: In this paper we analyze the classical path integral formulation of light transport, and rigorously study what wave-optical phenomena can be
reproduced by it. We show that some effects, like dispersion and scattering by a restricted class of statistical surface models (rendered in image A), fall under its
regime. We generalize the classical path integral to a formulation that is able to account for a much wider variety of wave effects, and based on that generalized
path integral present a unified framework that is able to: (B) simulate long-wave radiation and its propagation and diffraction in complex environments, for
example to compute its signal strength (visualized color-coded); and (C) render optical wave effects, such as diffraction by arbitrary geometry.

Abstract
Modeling the wave nature of light and the propagation and diffraction of electromagnetic fields is crucial for the accurate
simulation of many phenomena, yet wave simulations are significantly more computationally complex than classical ray-based
models. In this work, we start by analyzing the classical path integral formulation of light transport and rigorously study which
wave-optical phenomena can be reproduced by it. We then introduce a bilinear path integral generalization for wave-optical
light transport that models the wave interference between paths. This formulation subsumes many existing methods that rely on
shooting-bouncing rays or UTD-based diffractions, and serves to give insight into the challenges of such approaches and the
difficulty of sampling good paths in a bilinear setting.
With this foundation, we develop a weakly-local path integral based on region-to-region transport using elliptical cones that
allows sampling individual paths that still model wave effects accurately. As with the classic path integral form of the light
transport equation, our path integral makes it possible to derive a variety of practical transport algorithms. We present a
complete system for wave tracing with elliptical cones, with applications in light transport for rendering and efficient simulation
of long-wavelength radiation propagation and diffraction in complex environments.

CCS Concepts
• Computing methodologies → Rendering; Computer graphics; Scientific visualization; • Applied computing → Physics;

1. Introduction

Ray optics has been the foundation of light transport algorithms
in computer graphics since Whitted’s introduction of recursive ray
tracing. Especially with the development of path tracing, geomet-
ric optics light transport has become progressively more sophisti-
cated and has come to be able to model a wide variety of scattering
and illumination effects. Researchers have long sought to extend

such ray-based algorithms to model wave effects while maintaining
the efficiency of ray models. One area of focus has been scatter-
ing models that account for wave effects when light interacts with
surfaces or geometric edges; another has been the development of
algorithms to simulate wave-based light transport. These areas are
complementary in that the light transport depends on accurate scat-
tering and diffraction models while scattering models require in-
formation that is not available in a classical ray-based model: for
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example, the shape of the electromagnetic wavefronts or optical
coherence. In this work we focus on the light transport problem.

Wave-based models are more computationally expensive than
ray-based models, and so we begin by studying a fundamental
question: precisely which wave effects can ray-based light transport
accurately simulate, and which can they not? Under a few assump-
tions that are characteristic of rendering applications (e.g., sensors
that average measurements over long times and a far-field setting),
we rigorously characterize the conditions under which electromag-
netic fields obey the Eikonal equation point-wise, and thus, the
fields’ wavefronts can be propagated using rays. We further dis-
cuss and formally show what classes of materials can be simulated
with such light transport models.

With the boundaries of models based on independent rays es-
tablished, we turn to determining what wave-based models may
achieve. A number of wave simulation methods have been devel-
oped that use geometric rays as the underlying transport primitive,
so we start by deriving a bilinear path integral that characterizes
light transport with interfering ray-based paths. This work is in-
spired by Veach’s introduction of the path integral formulation of
the light transport equation that transformed the traditional recur-
sive rendering equation into an infinite-dimensional integral over
all light carrying paths in a scene [Vea97].

Our bilinear path integral spans the cases of pairs of paths that
do not interact—corresponding to standard path tracing; pairs of
phase-carrying paths that always interfere—corresponding to sev-
eral wave-based light transport models (see Section 2); as well as
pairs of paths that are partially-coherent, including approaches like
those based on propagating the Wigner distribution function or the
mutual coherence function. This model clearly shows the difficul-
ties of path sampling with ray-based paths: although each path in-
dividually may have a meaningful contribution, the interaction of
a pair of paths may lead to destructive interference and thus, no
light transport after all. Therefore, the efficiency of local path sam-
pling is greatly reduced, and path sampling effectively becomes a
global problem, where all path pairs need to be considered. While
these issues are well-known, our path integral makes the associated
sampling challenges clear.

We then turn to develop a weakly-local path integral that is
based on region-to-region transport. This model is inspired by phys-
ical light transport (PLT) [SSY22; SRB*24b], which introduced
weakly-local—meaning confined to a small spatial region—light
transport primitives. Our formulations generalize their wave-based
light transport equation and maintain the crucial characteristics
of modeling transport over small regions of space such that only
observable wave effects are accounted for. As transport is done
region-to-region (and not point-to-point), no interference between
pairs of paths may arise, making it possible to efficiently construct
individual paths via local sampling. Our formulations further al-
low the derivation of advanced light transport algorithms for wave
models, including a bidirectional model.

We show that elliptical cones form tight geometric envelopes for
PLT’s light transport primitives. Then, based upon the weakly-local
path integral formulation, a practical, general-purpose wave trans-
port model is developed. At its core, our wave transport algorithm
can be understood as replacing the classical ray with an elliptical

cone. We discuss how to traverse the scene with elliptical cones,
simulate the interaction of their underlying electromagnetic fields
with the geometry and materials that fall within an interaction re-
gion, and introduce a general importance sampling strategy. We fur-
ther show that this algorithm is able to reproduce accurate diffrac-
tion effects and do wave simulations for applications in different
parts of the electromagnetic spectrum, see Fig. 1.

2. Related Work

Our work builds on two classic foundations of ray-based light trans-
port. First is the path integral formulation of the light transport
equation [VG97; Vea97]. This expression of the rendering equa-
tion made it clear how to apply non-local sampling techniques to
light transport (i.e., that paths do not necessarily need to be sam-
pled incrementally from the sensor) and has provided a rigorous
foundation for deriving more advanced light transport simulation
algorithms. We also build upon the operator expression of light
transport developed by ARVO [Arv95] and VEACH [Vea97]. By ex-
pressing light transport and scattering as linear operators on func-
tions describing light emission and sensor response, this formula-
tion allows compact expression of light transport and has enabled
analysis of its convergence.

Starting with Stam’s pioneering work on modeling diffraction
from rough metalic surfaces [Sta99], there has been consider-
able work on BSDFs that model wave effects. Examples include
diffraction due to scratches [WVJH17; VWH18], iridescent and
pearlescent materials [GMG*20], thin-film interference [HIK*20],
and dispersion via thin dielectric layers above conductors [BB17;
KGK19]. Scattering models have also been developed based on
measured scattering from diffractive surfaces [TG17], diffractive
surfaces modeled with explicit microgeometry [FJF20; YXW*23],
and statistical models [HP17; Kry06; SY22]. Also related is recent
work on modeling free space diffraction as a BSDF [SRB*24a].

Many techniques have been developed to simulate wave-based
light transport. Approaches based on the Winger distribution func-
tion have been developed both in graphics [CHB*12] and in op-
tics [JB91; MWB*18; MJ21]. Outside of graphics, algorithms
based on different shooting-bouncing rays methodologies [Wei06]
or the geometric/uniform theory of diffraction (UTD) [SM99;
YHM*22; BVD20] are often used. All these approaches rely on
ray tracing for transport, and share a fundamental difference com-
pared with the more common ray or path tracing seen in computer
graphics: rays mutually interfere with each other. In this work, we
generalize the classical path integral to such bilinear transport; this
generalization highlights the additional sampling difficulties that
arise with mutually-interfering rays, and in the future may serve as
a theoretical foundation for developing better path sampling tech-
niques for such bilinear light transport models.

Recently, physical light transport [SY21; SSY22; SRB*24b] has
introduced weakly-local light transport primitives, which can be
understood as tracing beams of light instead of singular rays—
enabling the reproduction of a much wider class of wave effects,
compared with classical light transport. Previous implementations
of it have approximated the transport over regions with singular
rays. We develop the underlying path tracing theory by general-
izing the classical path integral to region-to-region transport, and
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present a solver that models wave transport over volumes using el-
liptical cones.

Cone queries have been used for differential visibility
[WMB*25], and accelerating data structures for cone traversal
were discussed by EMRE et al. [EKS25].

3. What Can Be Simulated With Classical Path Tracing?

Consider the classical path integral formulation [Vea97]:

I =
∫

Ω

f (sx)dµ(sx) , (1)

where sx ∈ Ω is a scene path—connecting an emitter to the sensor
over a finite sequence of points—in the space of all paths Ω, and f
is the real-valued, non-negative measurement contribution function.
The result of f is the power measured by the sensor.

It is well understood that the light transport under the formula-
tion above is governed by the laws of geometric optics. Neverthe-
less, some optical phenomena beyond geometric optics may be re-
produced accurately by this formalism. Our objective in this section
is then to rigorously answer the question: to what extent is classical
path tracing able to reproduce wave-optical phenomena?

In our supplemental material, Subsection S1.1, we formally
study the conditions subject to which the wavefronts of an electro-
magnetic field obey, point-wise, the Eikonal equation, and thereby
can be propagated via geometric-optical rays. These conditions can

SYMBOL UNITS

paths and their contributions

sx = x⃗1 . . . x⃗n a path: a finite sequence of n spatial
positions x⃗ j ∈R3

R a region: a bounded, closed subset R j ⊂R3

sR = R1 . . .Rn a weakly-local path: a finite sequence of n
regions (regions may overlap)

f (sx),g(sR) the measurement contribution functions over
a path

W

F(sx,sy) the mutual contribution function, given over
a pair of paths sx,sy

W

electrodynamics

λ wavelength of electromagnetic radiation mm

k = 2π
λ

wavenumber of electromagnetic radiation mm−1

k⃗ wavevector mm−1

ψ wavefunction (scalar electric field) V m−1

light transport and Wigner (space-frequency) distributions

φ(⃗r,⃗k) the Wigner distribution of a Gaussian beam
(see supplemental Section S3)

W or 1

L(⃗r,⃗k) Wigner distribution of an emitter’s emission W

W (⃗r,⃗k) Wigner distribution of a sensor’s sensitivity 1

T,T context-dependant interaction or scattering
operators acting upon Wigner distributions

Table 1: List of symbols and notation in this paper.

be summarized as: fields (i) of sufficiently high frequency (ii) that
propagate very far from their origin (emitter or scattering mat-
ter). We furthermore show that such fields behave locally as plane
waves.

We then assume that light is a stochastic ensemble of waves,
where every realization conforms to the conditions discussed
above. The wavefronts of such a wave ensemble can be propagated,
point-wise, via classical rays as in Eq. (1), and we study what wave
phenomena can be reproduced by such a description of light.

Dispersion and color The fields admit well-defined temporal and
spatial frequencies. It is possible to model emitters and sensors with
arbitrary emission and sensitivity spectra, as well as arbitrary dis-
persion relations for media, including cross-spectrum re-emission
effects, like fluorescence. These effects can be accurately integrated
in a spectral renderer.

One limitation arises: No interference between spectral samples
is permissible, as samples must add up incoherently in Eq. (1).
Therefore, we must assume that sensors time average, and the wave
ensemble is limited to the appropriate class of processes (see Sec-
tion S1 in our supplemental material).

Polarization The fields also admit well defined directions for their
electric components, enabling modeling arbitrary states of polariza-
tion, including random polarization (under time-averaging).

Interaction with materials Under the assumptions above, we may
propagate the wavefronts, point-wise, to an interaction point us-
ing geometric optics. A question arises: what extent of these wave-
fronts should be considered when simulating their interaction with
matter? That question cannot be answered with the information
we have: no additional specifications about the shape of the wave-
fronts, or their statistics (e.g., spatial coherence) can be deduced,
as there is no mechanism in Eq. (1) to propagate such informa-
tion. Deriving expressions for BSDFs can then be difficult. We
may choose to integrate over very large (or infinite) regions; this
would stretch the far field assumption, and also make it impractical
to deal with materials that admit explicit scattering features (e.g.,
a scratched surface, which would require integration over a vast
count of scratches).

In Subsection S1.2 of our supplemental material, we show that
if we understand the scattering process as a stationary (at least in
the wide sense) random process, then the knowledge of the exact
integration region is no longer required: it is enough to assume that
this extent is large enough to fully capture the surface’s statistics.

Thereby, we may simulate the interaction of light with materi-
als whose scattering is quantified by a statistically wide-sense sta-
tionary random process. The only assumption we make is that the
area of integration is large with respect to that process’s correla-
tion length. Such materials include Fresnel reflection and refrac-
tion; scattering by rough statistical surfaces (e.g., via the Harvey–
Shack formalism), periodic surfaces, or thinly-layered surfaces; or,
scattering by a stationary distribution of scatterers in a medium.

Summary Following the discussion above, we summarize what
forms of optical phenomena are amenable to classical path tracing:
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emitter receiver

(A) bilinear path integral formulation

propagation via elliptical cones

scattered cone

ballistic segment

intersected frustum

interaction region

(B) Weakly-local path integral formulation

Figure 2: Path integrals for wave optics. We develop two generalizations of the classical light transport path integral [Vea97]—capable of reproducing a
wide range of wave effects. (A) The bilinear path integral, Subsection 4.1 (implicitly employed by common methods that use phase-carrying rays, like those
that rely on UTD-based diffractions) accounts for the interference between all pairs of paths. Bilinearity frustrates local path sampling: assume that a path
was sampled; afterwards, another path might be sampled that destructively interferes with the former path, resulting in overall negligible contribution, even
with good local path sampling. (B) The weakly-local path integral, Subsection 4.2, formalizes region-to-region transport. In-place of rays, we employ elliptical
cones for transport, and formulate the aggregated interaction of light with all materials that fall within a region (illustrated in orange). This requires more
sophisticated machinery—tracing of elliptical cones and aggregated wave-optical interactions—but allows crucial local path sampling. Ballistic segments are
illustrated using thick lines, and an elliptical conic frustum within which intersected geometry is found in orange (see Subsection 5.1).

1. Light that is an ergodic, wide-sense stationary wave ensemble,
of sufficiently large spatial frequencies.

2. Sensors that time average over periods long with respect to
light’s temporal coherence.

3. The far-field assumption is made several times: the points of a
sampled path sx are assumed to be far from each other.

4. Scattering that is formulated in expectation by statistically wide-
sense stationary materials only.

Under these conditions, we prove in our supplemental material that
the classical path integral Eq. (1) is a sufficient formalism to repro-
duce all the wave phenomena discussed in this section.

Strictly speaking, it is usually not possible to perfectly satisfy
the above set of requirements, for example: at geometric edges or
where different geometries with distinct materials intersect (violat-
ing assumption 4). Nevertheless, at optical frequencies, classical
path tracing is able to simulate the wave-optical effects discussed
above at a reasonable accuracy.

In our supplemental material, we discuss which effects may not
be reproduced classically. As an example that motivates our the
derivations in Section 4, consider a ray passing close to geometry,
but not intersecting it. Under wave optics, part of the energy carried
by the ray should have diffracted around the geometry. However,
we may not detect this situation with classical ray tracing (a “does
this ray travel close to geometry” query would be needed), so the
energy that is propagated straight on is overestimated. To amend the
error, one may consider two approaches: we could (i) allow other
paths to fix these erroneous contributions, by facilitating interfer-
ence between different paths, as is done with ray-based techniques
such as UTD; or, (ii) replace ray queries with a volumetric query,
in order to sample regions—and not singular points—where wave-
optical interactions occur. In the following section we generalize
the path integral to both of these approaches.

4. Generalizing the Path Integral Formulation

4.1. Bilinear Path Integral

We extend the classical path integral with a map F : Ω×Ω →R,
the mutual contribution function, producing a bilinear path inte-

gral:

I =
∫

Ω×Ω

F(sx,sy)dµ(sx)dµ(sy) . (2)

We only consider maps F that fulfill the following properties:

1. symmetry, F(sx,sy) = F(sy,sx);
2. non-negative contribution over a single path, F(sx,sx)≥ 0;
3. Cauchy–Schwarz inequality, |F(sx,sy)|2 ≤ F(sx,sx)F(sy,sy).

Note, when sx ̸= sy, the map F(sx,sy) may take negative values. It is
easy to see that the properties above mandate that the path integral
in Eq. (2) integrates to a non-negative I, as desired (see Section S2
in the supplemental for a proof).

As a statistical distribution To see how the mutual contribution
function F connects to optics, let ψ be some realization of a statisti-
cal wave ensemble (i.e., ψ is some electric field). Given a geometric
path sx, we will let ψ(sx) denote the field strength that is transported
over that path. (We briefly mention a few formalisms that enable
such field transport over a path later). Then, the measurement in
expectation becomes:

I =

〈∣∣∣∣∫
Ω

ψ(sx)dµ(sx)
∣∣∣∣2
〉

=
∫

Ω×Ω

〈
ψ(sx)ψ⋆(sy)

〉
dµ(sx)dµ(sy) , (3)

where ⟨·⟩ denotes ensemble averaging and ψ
⋆ is the complex con-

jugate of ψ. We formally interchanged the order of ensemble aver-
aging and integration. The above takes an identical form to Eq. (2),
with F(sx,sy) = ⟨ψ(sx)ψ⋆(sy)⟩ quantifying the ensemble’s second-
order statistics (its cross-correlation), and is the mutual coherence
function in the optical context.

The statistical formulation above may also account for temporal
fluctuations, e.g., when F operates on paths with different wave-
lengths (under spectral rendering). This arises in practice in simu-
lations where sensors do not time average (or averaging times are
too short to induce temporal decoherence), for example for acous-
tic simulations with observable interference across spectral sam-
ples. For ergodic ensembles ψ, the ensemble averages can indeed
be understood as time averages, though we keep the formulation
general.
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Examples In the limiting case where the mutual contribution func-
tion is a proportional to a Dirac delta, F(sx,sy) = |ψ(sx)|2

δ(sx,sy) , the
above reduces to the classical unitary case, with f = |ψ(sx)|2 being
the classical measurement contribution function. The Dirac delta
formalizes the fact that all paths are assumed to be perfectly mutu-
ally uncorrelated—incoherent—and no interference arises. There-
fore, the bilinear path integral generalizes the classical path inte-
gral.

Another important special case is path tracing with phase-
carrying rays, where every pair of paths are fully coherent in their
measurement and interfere. Let the map F take the form:

F(sx,sy) = |ψ(sx)||ψ(sy)|Ree−ik(|sx|−|sy|) , (4)

where |sx| is the path’s total distance (in world units), and k = 2π
λ

is the wavenumber with wavelength λ. Clearly F fulfills the de-
sired properties of the mutual contribution function. The terms k|sx|
are then the phases carried by each ray, and the complex exponent
term quantifies the mutual interference between every pair of paths.
This formalism of phase-carrying rays encompasses several com-
mon light transport methods, including UTD-based simulations—
very common in acoustics and RF simulations—and other methods
that rely on mutually-interfering phase-carrying rays.

In between the above two extremes—perfect incoherence and
perfect coherence—partially-coherent formalisms arise. Such for-
malisms include light transport formalisms that employ the Wigner
distribution function or the mutual coherence function directly.

Local path sampling Local path sampling [Kaj86] is a very com-
mon technique to construct complete paths sx, where each point in
the path is recursively sampled locally by sampling the local inter-
action function and then ray tracing. Practical light transport often
relies on the ability to perform good local path sampling.

With bilinear light transport, local path sampling is hampered by
the fact that the mutual contribution F(sx,sy) usually cannot be eval-
uated without full knowledge of the paths sx,sy, and may annihilate
the paths’ contributions. That is〈

|ψ(sx)+ψ(sy)|2
〉
=
〈
|ψ(sx)|2

〉
+
〈
|ψ(sy)|2

〉
+2F(sx,sy) (5)

may vanish entirely. That is, even if a path sx was constructed
with effective local path sampling, another path sy might annihi-
late its contribution (illustrated in Fig. 2a). Under the bilinear set-
ting, path sampling always becomes a global problem. The classi-
cal path integral, Eq. (1), does not suffer from this issue, as its in-
tegrand is always non-negative. It is also noteworthy that construc-
tive/destructive interference happens at a high frequency across the
scene, making techniques like path guiding ineffective. The diffi-
culty with local path construction is a fundamental challenge in
path tracing simulations that employ typical UTD, or other phase-
carrying rays, formalisms.

Other forms of non-local path construction, like Metropolis light
transport, could be applied to the bilinear path integral. We leave
this to be explored in future work.

4.2. Weakly-Local Path Integral

The classical path integral, Eq. (1), formalizes point-to-point light
transport. We now generalize that formulation to region-to-region
light transport (illustrated in Fig. 2b):

I =
∫

Ω

g(sR)dµ(sR) , (6)

where sR = R0R1 . . .Rn is a generalized path defined as sequence of
bounded regions R j ⊂R3, Ω is now the set of all such sequences of
all bounded subsets of space, and µ is then the appropriate product
measure: µ(sR) = µ(R0) . . .µ(Rn). g is the path contribution func-
tion, which can be written in operator notation:

g(sR) =
〈

W, TRn−2→Rn−1→Rn TRn−3→Rn−2→Rn−1 . . .

TR0→R1→R2 LR0→R1(R0)
〉
. (7)

T are generic transport operators, generalizing the classical BSDF
to region-to-region transport. The emission function L sources a
distribution of light from a given initial region R0:

φ1 = LR0→R1(R0) . (8)

The transport operators then transform these distributions, as fol-
lows, thereby propagating them from region to region:

φ j+1 = TR j−1→R j→R j+1 φ j . (9)

Finally, the inner product of the sensor sensitivity function W over
the distribution of light quantifies the sensor’s response to a distri-
bution and yields the measurement contribution of the path sR:

g(sR) =⟨W,φn⟩ , (10)

which must be real and non negative, g(sR) ≥ 0. We discuss the
above further and prove the non-negativity of Eq. (10) in our sup-
plemental material. ⟨·, ·⟩ denotes the inner functional product (not
to be confused with the ensemble average).

In the following section, we understand the distributions φ as
a specific class of space-frequency (Wigner) distributions, and the
transport operators T describe the interaction of these fields with
matter in a region R j and their propagation to the next region. In
general, φ can take other forms: for example, they may be correla-
tion functions, quantifying a wave ensemble’s second order statis-
tics, or realizations from a wave ensemble. We keep the defini-
tion abstract to make it applicable to different light transport for-
malisms.

Our weakly-local formulation of the path integral makes explicit
the regions R j over which light transport takes place. It is easy
to see that Eq. (6) generalizes the classical formulation: when the
regions are reduced to points, T to classical BSDFs, and φ j to ra-
diance point samples, the above reduces to the classical point-to-
point transport. However, Eq. (6) is also more powerful than the
classical formulation: we now have a built-in mechanism to quan-
tify the shapes of the wavefronts of the underlying electromagnetic
field (via φ j), and to quantify the regions over which weakly-local
interactions of light with matter may take place (via R j).

Local path sampling Unlike the bilinear generalization in Subsec-
tion 4.1, the contribution g is crucially always non negative—no in-
terference across samples may arise. Local path sampling may then
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proceed in a manner essentially identically to the classical case:
sample an initial region R0, and then subsequent regions, using the
emission function L and the transport operators T , respectively.

5. Weakly-Local Light Transport

The ability to construct paths via local path sampling with
our weakly-local path integral formulation, discussed in Subsec-
tion 4.2, is a major advantage over its bilinear counterpart. It comes
at the cost of increased analytic and algorithmic complexities of
the simulation: light transport is now formulated in terms of re-
gions and not points, and our intersection queries are no longer ray–
geometry intersections but volumetric queries. In this section we
address these difficulties and present a general weakly-local light
transport framework targeting wave-optics simulations.

We build upon the physical light transport (PLT) framework
for wave-optics simulation [SRB*24b; SSY22]. Under that frame-
work, the emission and sensing distributions of a rather general
class of emitters and sensors can be written as a (countable) inco-
herent superposition of Gaussian beams. For example, the space-
frequency (Wigner) distribution of an emitter is decomposed as

L
(⃗

r, k⃗
)
=∑ j φ j

(⃗
r, k⃗

)
, (11)

where we use r⃗ for spatial coordinates, and k⃗ is a wavevector—
direction of propagation scaled by the wavenumber k = 2π

λ
—and

φ j are space-frequency Gaussian distributions. A similar decompo-
sition can be written for a sensor’s sensitivity distribution. Please
see our supplemental material for an extended overview of the rel-
evant parts of PLT and explicit expressions for φ j.

Path tracing and rendering with PLT involves: sourcing a sample,
i.e. a beam φ j, from an emitter (or a sensor); propagating it across
the scene and simulating its interaction with matter; and finally in-
tegrating over a sensor (or an emitter).

5.1. Wave Tracing

A fundamental difference with classical path tracing is that the dis-
tributions φ j are not point samples, but weakly-local beams, con-
fined to a bounded spatial region. We show in our supplemental
material that the spatial extent of φ j, as it propagates in unob-
structed space, traces an elliptical cone. Therefore, these elliptical
cones form tight geometric envelopes around these beams, and their
geometry is defined by the spatial and wavevector means and vari-
ances of φ j. As the Gaussian beam is fully described by its first two
moments, the geometric envelope defines the Gaussian beam φ j,
and vice versa.

Tracing the elliptical conic envelopes through space, i.e. wave
tracing, serves to construct the path sR = R1R2, . . . ,Rn, composed
of the weakly-local regions over which light transport takes place.
Evaluating the path contribution function g(sR) (Eq. (7)) over that
path yields the sample contribution. In our renderer, each beam is
parametrized by:

1. mean wavelength λ0;
2. Stokes parameters quantifying its polarization and power;

3. its elliptical conic envelope, parametrized by (i) mean spatial
position x⃗0 at its origin, (ii) mean direction of propagation d̂,
(iii) major and minor axes a⃗, b⃗, of lengths a = |⃗a| ,b = |⃗b| , and
(vi) major and minor opening (half) angles αa,αb ≥ 0.

Sourcing a beam is identical to PLT, and we provide explicit ex-
pressions in our supplemental material.

Traversal On free-space propagation of distance z ≥ 0, the geom-
etry of the elliptical cone is transformed as follows:

x⃗0 → x⃗0 + zd̂ , a → a+ z tanαa and b → b+ z tanαb ,

with the other parameters unchanged. We employ a BVH for ellip-
tical cone traversal acceleration [EKS25]. Traversal is similar to a
ray-based traversal, though a fundamental difference is that a cone
may intersect multiple triangles. As we traverse the BVH we col-
lect intersected triangles, and keep track of the distance to the clos-
est triangle dmin. The traversal routines returns all triangles that
intersect the elliptical cone within a distance range [dmin,dmin +δ),
where δ controls the depth of the intersection range. The “inter-
section distance” is defined as the propagation distance along the
mean d̂ (and not the radial distance), therefore the computed inter-
section region is an elliptical conic frustum (illustrated in orange in
Fig. 2b). We set ad hoc δ = 2a, i.e., twice the length of the major
axis, which is sufficient for most applications and a good compro-
mise between accuracy and performance for others.

Once the elliptical conic frustum that contains all the intersected
triangles has been computed, it becomes the next interaction region
R j+1. The wave tracing process then repeats recursively in order to
sample the complete path sR: the interaction of the beam with the
geometry at R j+1 is simulated and a scattered beam—and its el-
liptical conic envelope—is sampled (discussed in Subsection 5.2),
which is then beam traced to compute the next interaction region.

Ballistic propagation In order to allow a scattered beam to prop-
agate away from an interaction region (without extensive self-
intersections), as well as to allow it to explore tight regions (e.g., a
waveguide that might be narrower than the geometric envelope), we
perform ballistic propagations [LVD98]. Immediately after sourc-
ing or interaction, we assume the beam takes a ballistic path—
traces a ray with a vanishing cross section—for a short distance,
as follows:

1. We propagate the beam as a ballistic particle—via ray tracing—
for a segment of up to B wavelengths in distance.

2. If the ray intersects geometry, a normal interaction is performed;
after which we return to step 1.

3. Otherwise, we attempt to resume cone tracing from the end of
the ballistic segment:

a. if the elliptical cone immediately (without any further prop-
agation) intersects geometry:

i. set B → s×B, up to some predefined maximum Bmax;
ii. return to step 1.

b. otherwise, elliptical cone tracing is continued.

The scaling of the ballistic segment length B by s > 1 is designed
to avoid excessive attempts to terminate ballistic propagation. Bal-
listic propagation also alleviates some of the chronic pains of cone
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Figure 3: Comparison with a wave solver. a collimated beam impinges upon a screen with two slits cut in it, and a couple of conductive reflectors are placed
after the screen (setup illustrated on the left). Diffracted light reaches the far wall and the resulting diffraction pattern is rendered. We use a BEM wave solver
[BS21] to solve for the electric field over a 2D vertical slice, and compare with results computed using our renderer (UTD free-space diffractions), see plots.
Our results are shown below the plots. Multi-edge diffractions happen over two regions—slits and then reflectors—before reaching the wall. We also perform
the experiment without the reflectors (slits only) and plot analytic solutions to Fraunhofer and UTD diffractions: as expected our results closely match UTD
and are more accurate than Fraunhofer diffraction. Simulation costs. Ours, full 3D: 4 min and 195 MB of memory; BEM, 2D slice: 2 hours, 27 min and 60 GB.

tracing, like a beam propagating parallel to a wall and repeatedly in-
tersecting it. A ballistic path is illustrated via a thick line in Fig. 2b.

In addition to enabling a beam to explore tight confines in a
physically-sensible manner, ballistic propagation also serves as a
major performance optimization: the most expensive part of cone
tracing is when the cone passes close to geometry and many expen-
sive cone–primitive intersection tests are required. Given a wave-
length λ, our renderer sets ad hoc the initial ballistic segment length
B = 2λ, the max length Bmax = 216

λ, and the scaling factor s = 4.

5.2. Interactions and Diffractions

Let R j be an interaction region: that is, the intersection of an ellip-
tical conic frustum with geometry. The incident beam φ j interacts
with the matter and materials, and the scattered distribution from
an interfering superposition of N ≥ 1 triangles (and their materials)
is a bilinear combination that accounts for interference:

Φ

(⃗
r, k⃗

)
=∑

N
l=1 Tlφ j +2∑

N
m>l Tlmφ j . (12)

The terms Tl are operators which compute the scattered light pro-
duced by each triangle (or material) l. The double-subscripted scat-
tering operators Tlm quantify the bilinear interference terms be-
tween all triangle pairs. This is a very general expression—any
interfering wave-optical interaction needs to account for such inter-
ference terms. For example, if a triangle’s material models a rough
surface, then Tl computes the scattering of a Gaussian beam by
that surface over the triangle’s extent; often, an approximate sur-
face scattering model will be used. See our supplemental material
for more details.

Our goal is to sample a new beam and its envelope from Eq. (12),
enabling us to beam trace it and compute the next interaction region
R j+1. Formally, the power contained in some scattered Gaussian
beam φ

′ is the inner functional product:

I′ =
〈
φ
′,Φ

〉
= ∑

N
l=1

〈
φ
′,Tlφ j

〉
+2∑

N
m>l

〈
φ
′,Tlmφ j

〉
, (13)

with the inner product taken over the space-frequency (Wigner)
space:

〈
φ
′,Φ

〉
=

∫
φ
′
Φ
⋆ d⃗r d⃗k. The (unknown) beam φ

′ defines its
geometric envelope, which in turn defines the next interaction re-
gion. Therefore, if we could derive from Eq. (13) and expression for
I′ as a function of the envelope’s geometry, we could importance
sample a scattered beam from the interaction.

PLT invariants help us narrow down what kind of φ
′ we should

consider: The space-frequency bandwidth of the Gaussian beams φ
′

that decompose the scattered light Φ cannot decrease (we may not
“break a beam into smaller beams”). Because the Gaussian beam
is fully described by its elliptical conic envelope, this constraint
implies a geometric invariant: the envelope of the new φ

′ contains
the current interaction region R j and propagates into an identical
solid angle as the incident beam.

To satisfy this geometric invariant, when constructing a new el-
liptical conic envelope for an arbitrary new tracing direction d̂′

we
proceed as follows: we solve for the elliptical cone that contains R j
and propagates into the same solid angle as the incident beam, i.e.
tanα

′
a tanα

′
b = tanαa tanαb. The ratio α

′
a/α

′
b is chosen such that

the beam’s eccentricity remains constant (this is valid and simpli-
fies some intersection tests). This fixes the envelope, which in turn
defines the scattered Gaussian beam φ

′.

In general, computing closed forms expressions for the inner
products in Eq. (13) can be difficult. In our supplemental material,
Section S4, we study what assumptions (or approximations) need
to be imposed upon the scattering operators Tl , in order to be able
to write these inner products as functions of only incident and scat-
tering directions and interaction footprint. We call such materials
Fraunhofer materials, and show that for these materials the inner
products above take an analytically-simpler form. We also show
that classical BSDFs form a strict subset of Fraunhofer materials.

5.2.1. Importance sampling

We focus on the task of choosing the new direction d̂′
, and present a

novel, general importance sampling strategy for interfering interac-
tions. Our aim is to importance sample Eq. (13). In general, energy
conservation mandates the following:∣∣〈φ

′,Tlm
(
φ j
)〉∣∣2 ≤ 〈

φ
′,Tl

(
φ j
)〉〈

φ
′,Tm

(
φ j
)〉

. (14)

By the above, the terms
〈
φ
′,Tl

(
φ j
)〉

may act as a proposal distri-
bution for the entire sum in Eq. (13), and it must hold that

I′ ≤ N ∑
N
l=1

〈
φ
′,Tl

(
φ j
)〉

. (15)

This is a classical setting for rejection sampling.

Assume that we are able to importance sample a new direction
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Figure 4: Signal coverage simulations in realistic city scenes (from HOYDIS et al. [HCA*22]), done in full 3D. Visualized is the received signal strength
(rss) in decibels that reaches the street level. Emitter position is marked with a red-yellow circle. Simulation is done using (left) pure ray tracing with no
diffractions; or with UTD-based diffractions using a (middle) 30GHz or (right) 1GHz carrier. Note the greater rss reaching shadowed streets and areas when
diffractions are simulated. Buildings’ surfaces are perfectly-specular surface with wavelength-dependent refractive indices matching common construction
materials [ITU23] Coverage is computed over ground areas of (Etoile) 0.84 km, (München) 1 km in width. The elliptical conic envelopes’ cross-section areas
and primitive counts on interactions (means and standard deviations): (Etoile 30GHz) (56±250)m2, 7±21; (Etoile 1GHz) (90±290)m2, 9±22; (München
30GHz) (49±298)m2, 11±129; (München 1GHz) (84±364)m2, 10±107. UTD-based free-space diffractions are used (see Subsection 5.2.2).

from each of the terms
〈
φ
′,Tl

(
φ j
)〉

, but not from the more compli-
cated interference terms. Then, our importance sampling strategy
involves rejection sampling the interfering sum in Eq. (13):

1. Draw a direction d̂′
by importance sampling the (incoherent)

sum of non-negative terms ∑l
〈
φ
′,Tl

(
φ j
)〉

.
2. For the sampled d̂′

, evaluate the actual power I′ using Eq. (13),
and incoherent power Ĩ = ∑l

〈
φ
′,Tl

(
φ j
)〉

.
3. Rejection sample:

a. draw uniformly distributed u ∈ [0,1);
b. if u < I′/(NĨ) accept d̂′

, otherwise return to step 1.

This method produces perfectly-distributed samples. The expected
number of trials is N [CRW04].

5.2.2. Free-Space Diffractions

When an elliptical cone is partially occluded by geometry, one of
the scattering operators Tl in Eq. (12) is a free-space propagation
operator, and its restriction to a part of the incident beam gives rise
to free-space diffractions. We consider two methods to simulate
free-space diffractions: (i) building directly upon the Fraunhofer
edge-based diffraction method of STEINBERG et al. [SRB*24a];
and, (ii) by utilizing UTD. Both methods ultimately reduce to writ-
ing the diffracted term as an interfering sum, in the manner of
Eq. (12), therefore free-space diffraction operators should be un-
derstood as a special case of it. We summarize each method.

Fraunhofer edge-based diffraction This method proceeds ex-
actly as in STEINBERG et al. [SRB*24a]: the edges of the silhouette
of the diffracting aperture in an interaction region R j are extracted.
Each edge el gives rise to an edge diffraction operator Tel , while in-
terference operators Tel em account for the interference between the
edges. Together, these operators shape the Fraunhofer diffraction
pattern. STEINBERG et al. [SRB*24a] provide explicit formulae
for both, as well as a simple importance sampling strategy for the
edge diffraction operator Tel , but not for the more complicated in-
terference operators Tel em . Our importance sampling strategy from
Subsection 5.2.1 improves upon theirs by importance sampling the
entire interfering sum of edge diffractions, enabling high quality
sampling. We show in Fig. 5 that we are able to render complex
diffraction patterns under complex light transport.

UTD-based diffraction Fraunhofer-based diffractions are less ac-
curate for long-wavelength radiation, assume perfect conductors,
ignore wedge geometry, and it can be difficult to correctly classify
edges which are partially occluded by triangles within the interac-
tion region. As an alternative, we propose a method that relies on
the uniform theory of diffraction (UTD) [MPM90] to simulate free-
space diffractions. This method can be understood as tracing a ray
bundle confined within the beam’s envelope. At each interaction
region R j, we perform UTD-based diffraction by connecting rays
from the centre of the previous region R j−1 to the centre of the
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Figure 5: Wave optics rendering. A metal screen is placed between a powerful collimated light source and a wall. A geometric aperture is cut in the middle
of the screen: (left) star shaped or (right) vertical double slits. Our simulation reproduces the expected diffraction patterns. To make the light transport more
challenging we place a (left) mirror or (right) dielectric bunny, making direct sampling techniques difficult. This shows that we able to importance sample the
entire multi-edge diffraction well. This scene is miniaturized: the length of the far wall is 8 cm. The cross-sectional areas of the elliptical conic envelopes on
interactions are (0.2±1.0)mm2 (mean and standard deviation), and intersect with 14±261 triangles. Fraunhofer edge-based free-space diffractions are used.
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Figure 6: Indoor 5GHz simulations. We simulate signal coverage with a 5GHz wireless carrier in two indoor scenes with more challenging light transport.
Visualized is the received signal strength (rss) in decibels that reaches the floor. No geometric simplifications are done; the geometry used for the wireless
simulation is as visualized in the optical rendering insets. The surface materials are different from the optical materials: at 5GHz frequency, surfaces are
effectively perfectly specular, and the material (refractive index) is selected from the appropriate construction material [ITU23]: wood, plywood, chipboard,
plasterboard, concrete, or metal. (Office) This scene contains complex geometry and fine geometric details. The transmitter is placed at the top right corner;
note the increased rss around the lobby on the left and the meeting room on the right. (Building) rss is computed on the 3rd floor, while the transmitter is placed
at 2nd floor level in the stairwell (top right). Due to the transmitter’s placement, most emitted energy does not propagate to the 3rd floor, or is diffracted by the
staircase or railing. Paths that diffract several times are needed to reach the far areas of the large room on the left. Both scenes contain many glass windows,
through which significant energy radiates away. The elliptical conic envelopes’ cross-section areas and primitive counts on interactions (means and standard
deviations): (Office) (1.100±1.364)m2, 34±470; (Building) (2±40)m2, 29±905. UTD-based free-space diffractions are used (see Subsection 5.2.2).

next one R j+1 over the edges in R j, by checking if the diffracted
Keller cone for each edge in R j falls upon the destination. Using
the region’s centres is a simplifying approximation; proper bundle-
to-bundle connections are left for future work.

Similar to before, the rays in the bundle give rise to diffracted
terms Ten , however these are not Fraunhofer materials, and impor-
tance sampling is more difficult. Our sampling approach is very
basic: a conservative frequency-dependent Gaussian is fitted to the
UTD edge diffraction function, and at each interaction region an
edge (that is involved in the diffraction) is selected at random and
the next direction is sampled from that Gaussian. We do not con-
sider the interference terms when sampling, nor perform multiple
importance sampling (MIS) over the different edges. This leads to

rather poor sampling; a sophisticated importance sampling strategy
for UTD-based ray bundle diffractions is left for future work.

6. Discussion

Subsections 5.1 and 5.2 describe the primary components of wave
tracing as done in our system. We construct region-to-region paths
by tracing the elliptical conic envelopes of Gaussian beam samples.
Cone tracing allows us to sample a complete interaction region,
with all the contained geometry that the Gaussian beam interacts
with. In contrast to ray-based frameworks like Sionna [HCA*22],
we do not need to perform a shooting-bouncing rays exploration
pass in order to detect edges (which might fail to detect relevant
edges that may lie in shadowed, unexplored regions, or due to high
tesselation of the geometry). Cones are inherently able to sample
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zero-measure features, like the edges needed for free-space diffrac-
tion, and could also be used to sample caustics in a unidirectional
path tracer; to be explored in future work.

The beams and their envelopes often exhibit significant
anisotropy, for example, when a beam is scattered into a grazing
angle on surface interaction. Proper wave tracing then requires sup-
port for full elliptical cone tracing, with accelerating data structure
traversal and primitive (edges and triangles) intersection tests for
arbitrary elliptical cones. We provide implementation details and
additional comparisons in our supplemental material.

6.1. Results

We have validated our approach by comparing results to a BEM
wave solver; see Fig. 3. We find that our renderer overall matches
the reference well, yet computes solutions in 3D (rather than a 2D
slice) while requiring a fraction in computation resources. We have
also evaluated our algorithms for optical rendering and modeling
radio wave propagation.

In these results, we also report the means and standard devia-
tions of the areas of the beams’ cross-sectional areas and primitive
count at interaction regions. Note the large difference in areas be-
tween different wavelengths. For convenience, these statistics are
also summarised in Table 2 for all of our results.

Optical rendering Our optical results, Fig. 5, demonstrate the
ability of our implementation to simulate free-space diffractions in
scenes with extensive geometric detail and complex light transport.
All renders are spectral and polarimetric.

These results were rendered with a bidirectional path tracing
(BDPT) extension of our weakly-local path integral. When form-
ing connections between paths under BDPT, we wave trace each
beam from the two path vertices involved in the connection strat-
egy halfway towards each other. If both beams are unoccluded, the
beams meet and we integrate the beams over their respective space-
frequency footprint [SRB*24b]. Compared with the classical ap-
proach, multiple importance sampling (MIS) for BDPT changes as
some connection strategies may be occluded while others are not.
For our implementation, we use the classical strategy as an approx-
imation, and leave correcting MIS for BDPT for future work. See

-20 dB -13 dB -7 dB 0 dB 7 dB 13 dB 20 dB

ray tracing wave tracing

Building Office

Figure 7: Received signal strength (rss) differences between ray trac-
ing and wave tracing. Blue indicates areas where a ray tracing simulation
computes a higher rss compared with wave tracing, and red indicates re-
gions where the situation is reversed.

Subsection S4.2 of our supplemental material for more information
on our BDPT extension and explicit formulae.

Signal coverage We perform signal coverage simulations with
long-wavelength radiation in two large-scale city scenes (Fig. 4)
and two more complex indoor scenes (Fig. 6). At these wave-
lengths, all the surfaces become perfectly specular, and light
transport is simulated unidirectionally from the emitter only. The
wavelength-dependent complex refractive indices for all materials
are given by ITU [ITU23] recommendations for construction mate-
rials, and include concrete, glass, brick, wood, and metal surfaces.
For comparison, same scenes are rendered with pure ray tracing;
note the significantly higher received signal strength that reaches
the shadowed regions with wave tracing. See our supplemental for
additional analysis.

Ballistic paths For our optical results (Fig. 5), less than 10% of
the path segments are ballistic. These ballistic paths arise around
corners (e.g., when light is reflected off the very bottom of the
screen into the table), as well as in tight confines (around the flow-
ers). Transport with long-wavelength simulations requires larger-
aperture cones, and as expected a higher ratio of path segments are
ballistic: about 17% and 25% for the Etoile and München scenes
(Fig. 4), respectively.

SCENE

ELLIPTICAL CONE STATISTICS
THROUGHPUT

(samples/millisecond)cross-sectional area
(mean ± std. dev.)

triangles per cone
(mean ± std. dev.)

Etoile (Fig. 4)
30 GHz (56± 250)m2 7± 21 5.1k

1 GHz (90± 290)m2 9± 22 5.9k

München (Fig. 4)
30 GHz (49± 298)m2 11± 129 900

1 GHz (84± 364)m2 10± 107 1.1k

Office (Fig. 6) 5 GHz (1.100± 1.364)m2 34± 470 150

Building (Fig. 6) 5 GHz (2± 40)m2 29± 905 1.05k

Room (Fig. 5) optical (0.2± 1.0)mm2 14± 261 1.2k

Table 2: Performance statistics. A summary of the average cross-sectional area of a traced elliptical cone on an interaction, as well as average count of
triangles per interaction; as well as performance (samples per millisecond) for all of the scenes in our results.
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Figure 8: Comparison with pure ballistic propagation. We setup a sim-
ilar experiment to Fig. 3: (a) Light impinges upon and is diffracted by a
screen with several openings cut in it, thereafter the pattern it produces upon
the wall is imaged. We compare several simulation approaches: our beam
tracing method; pure-ballistic propagation, where beams are propagated
via ray tracing (as done by STEINBERG et al. [SRB*24a]); and geometric
optics. The simple planar setup also enables computing a numeric ground
truth using UTD. We (b) plot the intensity (its square root for visualization)
of light falling upon the wall, as well as (c) the rendered pattern (square
root of intensity and Decibels for the top and bottom half, respectively, of
each pattern). Both our method and pure-ballistic propagation reproduce the
diffraction pattern with good accuracy; however, the latter overestimates the
forward-scattered energy, which has to account for both the geometric op-
tics direct lobes as well as the wave optics diffraction lobes. The screen
elements are 2.5 mm in length, and spaced 3.5 mm apart.

Ballistic propagation is an effective, practical method to enable
particle transport in the presence of complex geometry.

6.1.1. Additional Comparison with ray tracing

We compare the received signal strength (rss) that reaches the floor
in the Building and Office scenes between ray tracing and wave
tracing, see Fig. 7. The color-coded blue and red areas indicate
areas where ray tracing or wave tracing, respectively, produce a
greater rss. As expected, over most areas wave tracing gives rise to
a higher rss, as light is able to diffract and penetrate into harder-to-
reach regions. Nevertheless, in some areas ray tracing dominates,
at times substantially so. These blue areas are errors induced by the
ray tracing simulation: light that should have diffracted continues
to propagate unobstructed. For example, light that passes through
the railings around the stairwell in the Building scene (top right),
or light that is reflected by ceiling fixtures towards the lobby in the
Office scene (left).

6.1.2. Comparison with pure-ballistic propagation

STEINBERG et al. [SRB*24a] present a light transport approach
where incoherent ray tracing is used for propagation and diffraction
effects are simulated at ray intersection points by considering the
geometry around the intersection. This can be understood as propa-
gating beams using purely ballistic paths—by ray tracing—and do-
ing full beam–matter interactions at the ray intersection points. We

compare our beam tracing approach with such pure-ballistic prop-
agation in Fig. 8. Observe that when light passes close to geometry
it diffracts, resulting in some of its energy scattering elsewhere:
shadow penumbras are enlarged under wave optics. Pure-ballistic
propagation cannot reproduce that effect, as nearby geometry is not
detected and rays continue to propagate undisturbed.

Pure-ballistic propagation methods are inherently biased and do
not conserve energy: the energy for the diffracted lobes should
come from light that passes through the screen openings and
diffracts (as done by our method), however that is not possible
with classical ray tracing. Therefore, in order to reproduce the
diffraction lobes when a ballistically-propagated beam intersects
geometry, STEINBERG et al. [SRB*24a] inject additional forward-
scattered energy into the system. This is unavoidable: as discussed
in Sections 3 and 4, incoherent ray tracing—formalized by the
classical path integral—cannot faithfully reproduce diffraction phe-
nomena, and a generalized formulation of light transport is re-
quired. Our method does not suffer from this bias because we only
perform full beam–matter interactions when proper beam tracing is
done, and not on ballistic intersections (instead, on ballistic inter-
sections we perform classical ray–matter interactions).

The extent by which shadow penumbras are enlarged is roughly
equal to the cross-sectional length of the traced beams. See Table 2
for a summary of these statistics for all our results. Note that for
long-wavelength radiation, this extent can be significant (roughly
several-to-many metres in length).

6.1.3. Comparison with Sionna

Sionna [HCA*22] is a communications systems simulation frame-
work that employs UTD to simulate diffractions. An initial ray trac-
ing pass is used to find triangles and their edges that might partici-
pate in diffraction. All these edges, across all samples, are stored in
memory, and a subsequent pass attempts to connect emitter–edge–
receiver diffraction paths via every found edge and to every receiver
(or pixel in a coverage map). No diffractions are mixed with re-
flections or scattering events, likewise no multiple diffractions, or
multi-edge diffractions are simulated.

We do a comparison with Sionna (version 0.19) in a very simple
scene, where single-edge, direct (emitter–edge–receiver) diffrac-
tions dominate, see Fig. 9. There are small differences between the
material and emitter models, nevertheless most differences are mi-
nor. Most differences arise in the bottom parts of the image, where
the majority of the energy arrives by reflecting off the buildings first
and then diffracting, which cannot be simulated with Sionna.

Note the memory requirements: Sionna’s memory requirements
become prohibitive with more complex scenes that require higher
sample counts.

7. Conclusion

Our discussion began with analyzing the power—in terms of repro-
ducing wave-optical phenomena—of the classical path integral for-
mulation of light transport; then, we generalized it to two formula-
tions that are used in wave simulations: (i) ray-based bilinear trans-
port; and (ii) weakly-local (region-to-region) transport. Region-to-
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Figure 9: Comparison with Sionna. The scene is “simple street canyon”
from HOYDIS et al. [HCA*22]. The position of emitter illustrated by the
yellow circle. The received signal strength (rss) in decibels that reaches the
street level is visualized, with a rendering of the occluding and diffracting
building geometry overlaid (buildings’ colors are for visualization only).
Not only can our approach account for path that involve both diffractions
and reflections, but ours uses significantly less memory as well.

region path tracing, as formalized by our weakly-local path in-
tegral formulation, enables formulating—and in turn, importance
sampling—scattering functions that account for the entire interfer-
ing interaction within a region. Contrast this to typical shooting-
bouncing rays or UTD-based approaches, where interference is re-
solved later at the sensor (as formalized by our bilinear path inte-
gral), and importance sampling turns into a global problem.

We discussed how to design a system for wave simulations,
based on our weakly-local path integral formulation, and we release
a complete rendering system that implements the ideas in this pa-
per. Our renderer is a fully polarimetric spectral renderer, designed
from scratch to target elliptical cone tracing and wave simulations
across the EM spectrum. Our system supports multi-material and
multi-edge interactions, as well as multiple such interactions over
a path.

Both our path integral generalizations serve to relax some of the
limitations of the classical path integral, discussed in Section 3. The
far-field and high-frequency assumptions are often relaxed (the de-
gree of which depends on the optical formalism), and the restric-
tion to statistically stationary materials is eliminated entirely. Fu-
ture work may focus on eliminating the time-averaging assumption,
enabling interference across spectral samples for acoustics simula-
tions, for example. Future work may also target the differentiability
of our rendering system for wave-optics modeling; differentiable
rendering is likely to be more efficient in a non-bilinear framework
like ours.
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