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S1. Analysis of the Classical Path Integral

We supplement the discussion from the paper, Section 3, where we
study what optical phenomena can be reproduced by the classical
path integral. We provide formal proofs and derivations here.

S1.1. Geometric Propagation of Electromagnetic Fields

We discuss the conditions under which an electromagnetic field can
be written as a field where wavefronts’ propagation is point-wise
governed by the geometric-optical Eikonal equation.

Let the electric and magnetic fields of some monochromatic ra-
diation be

ﬁ(?,l) — B(i:)eikll(f)efiwl ,
M

where k = ZT” is the (vacuum) wavenumber and ® = ck is the tem-
poral angular frequency, with A being the (vacuum) wavelength
and ¢ speed of light in vacuum, a,h are real vector-valued spatial
functions and u describes the field propagation dynamics: surfaces
where u(T) = const are the wavefronts, with Vu being the normals
to these wavefronts—understood as direction of propagation of the
wavefront. These are general expressions, since the complex spatial
phase was decoupled from the other terms.
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Let the fields above propagate in a medium with spatially-
varying permittivity €(¥) and permeability u(¥), and away from
charge and current. Using Maxwell’s equations, we get:
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Assume that the spatial derivatives of a and h vanish or are
negligible compared with dot or cross products above. We discuss
the validity domain of this assumption later. Then, dropping these

terms and simplifying gives
Vu-E=0,
Vux E=ouH

Vu-H=0, (6)
VuxH=—0ck . @)
By substituting Eq. (7) into each other and simplifying, we get:

Kn2E = —Vu x (Vu x fz) —E|Vu?, ®)

with a similar relation for H, where M = c/€eu is the refractive
index. We used the triple cross product identity, and the fact that
Vu-E=0 (from Eq. (6)). The vacuum wavenumber k makes the
wavelength dependence explicit.

Eq. (8) is the Eikonal equation |%Vu\ o 1%, with Vu(¥) being
the direction of propagation of the wavefront at ¥, implying prop-
agation is governed point-wise by geometric optics laws. The only
assumption we made was neglecting the divergences and curls of
Ei,ﬁ in Egs. (2) to (5), which formally can be written as:

V. =0 and IV x & < k[Ex Vu|, ()

and similarly for h. For which electromagnetic fields does this ap-
ply? A combination of far-field time-harmonic fields—arising far
away from emitters or scattering matter—and sufficiently high spa-
tial frequency fields (short wavelength).

Other work in optical literature has also analyzed electromag-
netic fields, in order to derive some correspondence to a classi-
cal theory. For example, in the context of radiative transfer theory
[MTL18].

S1.1.0.1. As a plane wave in the far field Finally, observe from
the conclusions above that {@, h, Vu} form an orthogonal triad, and
that the spatial variations in the peak amplitude and field directions
a,h are small with respect to the spatial frequency k. Therefore,
locally (and around a point to a second-order expansion) the field
behaves as a plane wave.

S1.1.1. As a wave ensemble

Subsection S1.1 treated the fields as deterministic. Generalizing to
a stochastic wave ensemble is straightforward: the above analysis
applies for each realization of the wave ensemble, with identical
conclusions.
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In the paper, we also require that sensors time average over suf-
ficiently long periods, thereby cross-spectral samples exhibit no
interference at the sensor (i.e., paths of different wavelength are
summed up linearly). For that to hold, time averaging must corre-
spond to averaging over the wave ensemble statistics. This implies
that the wave ensemble is ergodic, and ensemble averaging indeed
becomes time averaging. Often, an assumption of stationarity (at
least in the wide sense) is imposed as well, indicating that the tem-
poral statistics of the field remain constant; though, as long as the
time averaging period of the sensor is always greater than the en-
semble’s length of temporal coherence, stationarity is not strictly
necessary.

Anyhow, the assumptions of ergodicity (and stationarity) are of-
ten well justified for optical fields [Wol82]. Indeed, it is the assump-
tions on the electromagnetic field (on each realization of the wave
ensemble) made in this Section that are far more constraining.

S1.2. Scattering by a Surface

For simplicity, we perform our analysis with scalar fields. Let an
incident local plane wave of wavenumber k, Y(¥) = elkl ', interact
with a scattering surface. The incident and scattering directions are
i0, respectively. The (unknown) interaction region over the surface
is A, and a(¥) be a modulation function that quantifies the scattered
amplitude at a surface position. We formalize the interaction via the
Fraunhofer diffraction integral:

WVW

up to irrelevant constants.

2
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To make further progress, we understand the surface scattering
as a stationary, at least in the wide sense, random process with au-
tocorrelation Ro,(¥] —¥2) = (0¥ ) (¥2)),,, where (-),, indicates
averaging over the material properties. Then, the scattered intensity
in expectation is
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When the integration region A is sufficiently large to fully
capture the statistics of the wide-sense stationary o, by the
Wiener—Khinchin theorem the Fourier transform above (after a
change of variables to integrate over the lag ¥; — ;) yields the
spectral power density Sq of the random process:

(1), o< Sa (K + k8 (12)

(up to irrelevant constants). We conclude that when o is a (wide-
sense stationary) random process, the expected scattered intensity
is proportional to the spectral power density, assuming that A is
much larger than the correlation length of the process.

In a like fashion, similar results are drawn for vectorized fields
and volumetric interactions, Also, a more sophisticated diffraction
method may be used, but the same conclusion applies: exact knowl-
edge of A is not needed, as long as it is large enough such that
autocorrelation Ry dictates the integration range in Eq. (11).

S1.2.1. Incoherence on Scattering

We extend the analysis above to consider the scattered intensity
when light illuminates the surface from two directions. We will
show that the scattered intensity is an incoherent superposition of
the incident waves.

Assume that light is observed at a single point far from the scat-
tering surface. Let iy, iz, 01, 0, be the incident and scattered direc-
tions, respectively, for the waves. Let o, and o be the random pro-
cesses quantifying the scattering by the surface of the first and sec-
ond plane waves, respectively. The regions of interaction are Ay, A,
for each of the incident waves, and we assume for simplicity that
|A1| = |A2|. Then, the observed intensity is:

2 >
m
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(up to irrelevant constants), where we expand the magnitude
squared into a product, as before, and (I, »),, are the scattered in-
tensities for each wave. The cross term between the integrals is:

1/(12 f‘(xz (?)e1k62 By di:

eikil.F(Xl (—») k0, -F dl'-‘r
Ay

Az

312 _ R]Z(rl _r2 lkl'l (1+01 7ikf2'62+62) df'] df'z
‘AZ‘ A1/ Az
ke gy / R (@) (0401 g5
‘AZ‘ A A1—Ay
. . 1 G s TGy
:Slz(kiﬁ—kol)—/ ikt (i1+61—i> oz)du’ (14)
|A2| JAz

where Ry = (011 t3),, is the cross-correlation between the random
processes 01,0, and Sy is the cross-spectral power density of the
processes. We make the variable changes ¥; — ¥, — Vand ¥, — i,
withA; —Ap = {¥| — ¥, | ¥| € A|,¥; € Ay}, and assume, as before,
that the integral over v fully captures the statistics of the scattering
random process (note that the area |A| — Ap| is greater or equal to
the areas of A1,A7)

Consider the integral over A; in the last equation above, and
for 91mphc1ty we will analyze it in 2-dimensional space. Denote
g =1, +6; —1» — 6 and let Cx be its projection upon the (1-
dimensional) surface. Then, W Ja, exp(ikXLy) dx = smc(kcx%).
Over a two-dimensional surface this becomes a sinc squared. By
our far-field assumption, we assume high-frequency radiation, k >
1, and large integration region, A >> 1, therefore the squared sinc
term decays to 0 extremely rapidly as z # 0. Clearly, in our config-

uration, { = 0 iff i; =i and 6; = 0,.

We conclude that the cross term J;; vanishes, unless _i‘l :fz and
01 = 0y, i.e. both waves arrive and scatter into the same direction,
which also implies that &; = 0o and therefore S1; is the spectral
power density of the random process. Therefore, the addition in
Eq. (13) is always incoherent, with no interference. The same con-
clusion would not hold if we had explicit scattering features, which
would limit the integration in Eq. (14) to a small extent. We did
not make any new assumptions in this Section: we rely on the same
far-field assumption, where the local plane wave resemblance of
the high-frequency electromagnetic field is maintained over suffi-
ciently large extents, and the wide-sense stationarity of the scatter-
ing random processes.
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S1.3. Proof of Conditions

We prove that subject to the following conditions (as presented
in the paper), classical path tracing can reproduce the effects dis-
cussed in the paper in Section 3:

1. Light that is an ergodic, wide-sense stationary wave ensemble,
of sufficiently large spatial frequencies.

2. Sensors that time average over periods long with respect to
light’s temporal coherence.

3. The far-field assumption is made several times: the points of a
sampled path X are assumed to be far from each other.

4. Scattering that is formulated in expectation by statistically wide-
sense stationary materials only.

The wavefronts of an electromagnetic field that fulfills the pos-
tulates in Subsection S1.1 can be propagated, point-wise, using
geometrical-optics rays. Let X = XoX| ...X, be a path constructed
by such ray queries. At each interaction point X, light is scattered
by a wide-sense stationary random process, as in Eq. (12). Because
the initial phase of the wavefront plays no role in the scattering, the
scattered intensity, at path vertex X; is

o =18, (K +K5; ) (15)

where [; is the incident intensity, and ?jﬁj are incident and scat-
tering directions, and S; is the material’s power spectral density
(PSD), as before. As the PSDs must be real and non-negative, the
path contribution f(X) is also a real, non-negative value.

Lety be another path. We want to show that the total contribution
of X,y is incoherent, and no observable wave interference between
the paths arises. If the paths are of different wavelength, then inco-
herence is mandated by the time-averaging of our sensors. Other-
wise, assuming that lights interacts with the scene at least once, the
paths always admit subpaths of the form X;_ X ;Z and §,_,¥,Z, with
Z a common vertex. Then decoherence arises on scattering at X ; and
¥, which can be arbitrary vertices on the same or distinct materials,
as discussed in Subsection S1.2.1. We conclude that the contribu-
tion of both paths is simply the incoherent sum f(X) + f(y), as
required.

Above and in Subsection S1.2.1, we assume that a sufficiently
diffuse interaction is taking place. In the case, where the emitter
is imaged directly or through several perfectly (or almost perfectly)
specular interactions, conditions on the emitter could be established
for decoherence; we ignore this case as exceptional.

S1.4. What May Not Be Reproduced

Optical effects that cannot be reproduced accurately include all ma-
terials which may not be described as a stationary (at least in the
wide sense) stochastic process. That is, any materials that include
explicit scattering features. Such materials would require integra-
tion over infinite extents (in a sense, this can be understood as forc-
ing stationary statistics from explicit data) which would imply an
(impossible) infinite far-field assumption.

Some optical effects only arise over explicit realizations of the
material’s stochastic process (stationary or otherwise), but not in
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expectation. For example, optical speckle may materialize on scat-
tering by a rough surface. While the surface might very well be de-
scribed by a stationary process, when the scattering is formulated
as the expected value, as in Eq. (11), no optical speckle would be
reproduced. This is because we are averaging over the ensemble of
all surface realization, but speckle requires integrating over a spe-
cific surface realization. The same applies to all other effects that
do not arise in expectation.

Interference between materials (stationary or otherwise) cannot
be reproduced (unless the interference process itself can be written
as one material with an underlying stationary process; for example,
thin film iridescence). This includes interference between geomet-
ric edges and geometric diffractions.

Finally, interference between spectral samples, and other tempo-
ral interference effects cannot be reproduced.

S2. Non-Negativity of the Bilinear Path Integral

In this section, we briefly prove the non-negativity of our bilinear
generalization of the path integral (Subsection 4.1 in the paper).

Recall the properties of the mutual contribution function F:
F(x%,X) >0 (16)
FEY)] <FRRFEF.Y) ., (17)

i.e., it is non-negative over a single path and fulfills the Cauchy—
Schwarz inequality. From the above we may deduce

F%.X)+F(3.9) + F(%y) + F(3.%)
> F(X,X)+F(¥.y) —2/F&XF(.Y)

2
= [VF&® - VFGY)| 0. (18)
Then, apply the bilinear path integral (Eq. (2) in the paper):
I:/ F(x,y)du(x)du(y
oo B ) du(x) du(y)

=3 [y 0000 [ PR F.5) +FE3) 4 F(5.9)du09)
>0,

19
which concludes the proof.

Note that the property of non-negativity of F (Eq. (16)) follows
from the Cauchy—Schwarz inequality (Eq. (17)); in the paper we
make it explicit for clarity. Also note that the property of symmetry
is not required for the proof above, however non-symmetric mutual
contribution functions do not make physical sense.

S3. Background: Physical Light Transport

Physical light transport (PLT) works with Gaussian wave packets—
termed generalized rays in STEINBERG et al. [SRB*24b]. Their
name refers to the fact that generalized rays form the most com-
pact, physically-realizable wave packets possible, and they gener-
alize many of the useful properties of the classical ray of geometric
optics to a wave optics. Nevertheless, generalized rays are not rays,
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per se—they are not infinitesimal rays with zero cross section—
but a wave packet with a positive cross section. We refer to them
as Gaussian beams to make the distinction from rays explicit. For-
mally, the phase-space distribution—the Wigner distribution func-
tion (WDF)—of such a Gaussian beam is

0x. (%K %0, Ko ) £ S exp [~ (X — %) T2 (%)

coxp [ (ko) (757 +3) (k)]

X exp {2(52 %) TpE! (E f Eoﬂ . (20)
and its corresponding (spatial) wave function takes the form:

[Re }2+1p1 |elk0 (X—%o)

Ve.p (%5 %0, ko) =
e 3 (%) T (E+ipl) ! (%) ., 21)

where I is the identity matrix. In the definitions above, X and EO are
the mean spatial position and mean wavevector, respectively. Of-
ten, we will omit these means from the argument lists, for brevity.

The above parameterization of Gaussian beams is chosen in a
way that is most compatible with how we use them in light transport
simulations: X is the initial spatial variance (symmetric positive-
definite) matrix of the wave packet, and p > 0 is a correlation factor
that depends on propagation distance (initially p = 0 and it grows
linearly with the distance travelled by the wave packet). £ does not
change on free-space propagation, but it may mutate upon light-
matter interactions. We will discuss these aspects later.

By design, a decomposition into Gaussian beams admit proper-
ties that are very useful for light transport simulations: Gaussian
beams are weakly-local, superpose linearly in terms of intensity
observed by a sensor, and form a complete basis.

In general, transformation of the WDF—on propagation or in-
teraction with matter—is described via an interaction kernel K and
a corresponding interaction operator T:

T (iE) é/d3 ' &K K(*, ’,E,E’)W(sz’,f(’) . @

where # is an arbitrary WDF. K (%,%,k, k') can be understood as
the impulse response arlsmg at target p01nt X with wavevector K
under excitation from X’ with wavevector K’.

For more information on WDFs in the optical context, see BAS-
TIAANS [Bas79] and ZHANG et al. [ZL09].

S4. Wave Tracing
S4.1. Gaussian Beams as Elliptical Cones

The weak-locality of Gaussian beams means that we may define a
geometric envelope—outside of which the wave packet is zero or
negligible—and use that envelope for propagation and intersection
tests with geometric meshes in our light transport simulations. We
show that an elliptical cone serves as a tight geometric envelope.

Consider a Gaussian beam, with its phase space distribution
quantified by Eq. (20). Via trivial analysis the first-order moments

are
/d3?{ K% Gy, <§K) —% 23)
/d3 % kK Gzp(x k) —K, (24)

i.e. the mean spatial position and wavevector, as expected. The
second-order moments (spatial and wavevector variances) are

2

Vary & / PR Gy (1K) %K) = 527 +1E 25)

Vary 2 / ¢*%d’Kk RKG (%K) ~Kok] = 327" (26)

We may recall the famous uncertainty relation [MW95, Chapter
21]: | Vary Varg| "> 21 , and note that (i) the variances above indeed
fulfil this relatlon (because p > 0); and, (ii) when p = 0 (i.e., ini-
tially at sourcing, before the Gaussian beam has propagated) the
equality in the uncertainty relation is fulfilled, meaning that Gaus-
sian beams are as spatially compact as physically permissible.

In similar manner, we note that the correlation between the spa-
tial position and wavevector dimensions is

Corryy 2 / xR %KTGr (X K) ~%0K] = 627, @7)
i.e., zero initially, and grows linearly with p.

We will now analyze how the Gaussian beam ¢ transforms on
free-space propagation. The free-space propagation kernel is

K(i,i’,f(,ﬁ’) L5 (12 — 12/) § (i - K — sz’) (28)
(see TESTOREF et al. [THO10]), where d is the distance of propaga-
tion. Start with p = 0 (i.e. before propagation), then, via Eq. (22):

% o xk /Kxcpzo_q)“(t% 12). (29)

Primed variables are used in order to denote quantities after the
free-space propagation interaction. It is easy to verify that after
propagation the spatial mean is translated by distance d, in direction
of EO and the wavevector mean remains unchanged, as expected.
The variances and covariances after propagation are

Var, =3 % S LN (30)
Varg, =127, 31
Corrg =3 £27". (32)

The above are identical to variances and covariances of the Gaus-
sian beam ¢ (Egs. (25) to (27)) with p = %. We conclude that on
free-space propagation of distance d the correlation factor p in-
creases by /%

As also observed by MAN’KO et al. [MWO8], we note in pass-
ing that propagation induces correlation between position and mo-
mentum (wavevector), with Corryk increasing linearly with travel
distance d. This correlation is responsible to the increase in the
spatial extent occupied by the beam (as evident from Eq. (25)). It
also means that we may not “break” a Gaussian beam into smaller
beams after propagation, as these would not fulfil the uncertainty
relation scaled by the induced correlation factor.
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S4.1.0.1. Geometric interpretation Note that the spatial vari-
ance, Eq. (25), can be written as Varx = %E + p2 Varg. The
wavevector variance hence acts as the (potentially anisotropic)
solid angle into which the wave packet propagates. Therefore,
the three-dimensional ellipse {5(' | [X—%o)T Varx(X — 3('0)]1/2 < 3}
formalises the spatial extent around the mean Xy where the Gaus-
sian beam wave packet is non-negligible (i.e., within 3 standard
deviations in any direction). On propagation, with p = d / ko, that
ellipse traces an elliptical cone and forms a tight envelope (every
point on the elliptical cone’s shell is always within 3 standard devi-
ations from the beam’s mean) around the Gaussian beam.

As discussed in the paper, after interactions we do the follow-
ing: in order to maintain the correlation factor between position and
wavevector and produce correct beams and envelopes, we source a
beam from the interaction region, projected into the new direction
of propagation. This fixes the spatial variance for the new beam,
and the wavevector variance—the solid angle into which the beam
propagates—remains identical to the incident beam.

S4.2. Bi-Directional Light Transport

Light transport with Gaussian beams was formalized for backward-
only transport [SRB*24b], i.e. where sensor distributions are trans-
formed via time-reversed interactions, and then integrated over
emission distributions (formally, a functional inner product):

1=Cm* (#e, (Tt T ) {#a}) (33)

where I is the observed intensity by the sensor, %, #, are the
sensor and emitter distributions, i.e, their WDFs, respectively (d
stands for “detector”, and e stands for “emitter”), and ’7'bt . 1s a se-
quence of N, > 0 time-reversed interaction operators (b stands for
“backward”): in practice, these are sequences of free-space propa-
gations followed by light-matter interactions. See STEINBERG et al.
[SRB*24b, Section 4] for more information on these interactions.

In similar manner, we may apply forward (non time-reversed)
interactions to the emitter distribution, giving rise to bi-directional
light transport formulation:

1= (T Tra) e} (T Tiln) {0} ).
(34)

We decompose the sensor and emitter distributions into linear
sums of Gaussian beams:

My
Hi= Y10, and (35)
7e=Y 1 (36)
r.’,0’

with I; , being the power contained in each beam. Gaussian beams
sourced from an emitter remain weakly-local and linear.

For any interaction operator 7 and beam ¢, the transformed dis-
tribution 7{¢} can always be written as a sum of one or more
Gaussian beams [SRB*24b]. Therefore, the problem of integrating
Eq. (34) reduces to integrating two Gaussian beams with identi-
cal wavevectors (i.e., the distributions are propagated towards each
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other, and time-reversal flips the wavevector), propagated to the
same mean position:

<¢21~,pl 7¢£2~,P2> - /.dsﬁdsl;%l7ﬂ1 (§7R>¢227ﬂz (§7R)

_ 53 =] )8,
|det[Z) +X2 +i(p1 — p2)I]|

@D

where in the denominator we take the complex magnitude of the
determinant.

(m)

The variances £ ;" of Gaussian beams that are sourced from a
sensor are chosen such that the spatial extent coincides with the
size of the sensor (or pixel), or a part of it. How do we choose

the variances 22” of the Gaussian beams sourced from the emit-
ter? Ideally, we would like to maximise the contribution of con-
nected Gaussian beams, i.e. maximize Eq. (37). In general, that
requires intimate knowledge of the entire transport that both Gaus-
sian beams (forward and backward) take before integration. Bereft
of such information, we note that one way to maximise Eq. (37) is
when p; = pp and | =X,. That is, if we initially set £; =X, and
if we assume that the travel distance of the forward and backward
Gaussian beams is roughly similar, viz. p; ~ p;. If we assume that
light-matter interactions only apply orthogonal transformations to
the variances X > (which is often, but not always, the case), then
Eq. (37) takes its maximal value of 1.

S$4.2.0.1. Summary
beams involves:

Bi-directional transport with Gaussian

1. Sampling a Gaussian beam from an emitter distribution, and

propagating and transforming it forward in the scene.

2. Sampling a Gaussian beam from a sensor distribution, and prop-

agating and transforming it backward, via time-reversed tempo-
ral dynamics time-reversed interaction operators.

3. Connecting the backward and forward Gaussian beams by prop-

agating both towards each other (opposite wavevectors) and to
the same spatial position, and integrating their contribution via
Eq. (37).

Note that the above is similar to classical bi-directional light
transport: Sensor and emitter light subpaths are constructed, and
then connected to form a complete emitter-to-sensor light path. The
primary differences compared with the classical formalism are:

e In the classical case the throughput of a connection between the
sensor and emitter subpaths is either O (shadowed) or 1; in our
case, a connection requires propagating the Gaussian beams to-
wards each other, and (if no shadowing occurs) the throughput is
the integral over the Gaussian beams’ phase space footprint and
may take any value in [0, 1].

e Due to the above, multiple importance sampling (MIS) of the
subpath connection strategies becomes more complicated, and is
left for future work.

e Typically, in the classical context the generation of the emitter
subpath does not depend on the sensor to which we attempt to
connect, however in our case the spatial variance >:§’> of the emit-
ted Gaussian beam is chosen w.r.t. the sensor.
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S4.3. Interaction with Matter

We will now consider the interaction of a Gaussian beam with mat-
ter. Let a Gaussian beam impinge upon matter with different scat-
tering potential functions Ay, ..,y that dictate the scattering from
different spatial regions (i.e., different materials that fall within the
Gaussian beam’s envelope). The aggregated interaction kernel, for
the entire region under the Gaussian beam spatial extent, can be
written as [THO10]

k(%% KK) /d
thj(ﬂjy,i ! )Zh,(x—jyﬁ—%y’), 38)

J

y exp —1k y+ik’ 31'/>

where h; are the optical response functions of the matter. The above
motivates us to define cross-interaction kernels:

Kj,<3(' % _’,l_i’) é/d3 d%y exp <—1k y+ik’ - y’)

xchj (34 43,58 + 33 )i (%= 49.5' — 15') .
(39)

We denote the shorthand K; = K;;. While the interaction kernels
K and K; are real functions, the cross-interaction kernels K ;; (with
J # 1) typically take complex values.

The aggregated interaction kernel is then

K2£YKi+Y K ,_ZK +2Re Y K (40)

J J#l I>j

where the second equality follows from the fact that K;; = Kl*j.
Two kinds of terms enter Eq. (40): (i) Direct kernels K;: these
quantify the wave-optical interaction with a single material (e.g.,
a single triangle)—in a sense, the wave-optical analogue of the
classical BSDF. Examples of interaction operators are provided by
[SRB*24b, Supplemental]. (ii) Cross terms K;: these account for
the interference between each pair of materials.

Let 7 be the aggregated interaction operator that corresponds to
the kernel K. Let the incident Gaussian beam be 4)2/ /. The power
contained in a scattered Gaussian beam is then the i 1nner product

1oz} = (0

Further analytic progress requires making some assumptions with
regards to the kernels K, K.

$4.3.0.1. Quasi-homogeneous matter Often, we are interested
in describing the matter statistically: for example, a rough surface,
participating medium or a diffraction grating; and computing the
scattering response in expectation. In such cases, we understand
the scattering potentials & as stochastic processes. A useful class of
statistical matter is quasi-homogeneous scatterers [Korl7, Chapter
8.2] (introduced as locally-stationary matter by STEINBERG et al.
[SY21]), where the cross-correlation between a pair of scattering

potentials 4, h; can be written as:
(j(%1.%1)hf (%2, %2))
= jl<X]erX2 A% ># i (%o —%, % X)), (42

where (-) denotes ensemble averaging (not to be confused with the
inner product). X’,% can be understood as source and destination
positions, respectively, /;; is the scattering mutual intensity, and u
is the degree of spatial cross-correlation. When j = [ the cross-
correlation of the scattering process above becomes the autocorre-
lation. Dependence on wavenumber k is implied.

The ensemble-averaged cross-interaction kernels in Eq. (39) be-
come

<Kﬂ (m’,f( K >> I (%,%) iy (k k) 43)

where [i is defined as the conjugated double Fourier transform of
the degree of cross-correlation:

e [@yay e ® Ry 55) . @

For more information on locally-stationary matter, see STEINBERG
et al. [SY21, Section 5].

ijr (E7E/)

S4.4. Fraunhofer Materials

We define a special case of quasi-homogeneous matter as Fraun-
hofer kernels. Such kernels arise when two conditions are met: (i)
the mutual intensities /;; do not depend on the destination position
X, viz.

]jl (3(',3('/) Eljl (il) s (45)

(ii) and, in Eq (43), we > may replace the K(%,%/, K, E/) term with

K(X,X ,ko,ko), where ko,ko are the mean wavevectors before
and after interaction. These assumptions can be understood as the
Fraunhofer approximation for quasi-homogeneous matter, and is a
form of a far field assumption. Interactions such as scattering by
rough surfaces, diffraction gratings, and many optical elements can
be represented by Fraunhofer kernels.

Then, for such kernels,
(H{oz.p}) = Zuﬂ Ko, Ko /d %'k, (%K)

32/ 3¢ <!
/d R () ey (R K) . @6
Note that /¢ = 1, by definition, hence the integral over %, kis unity:
~ Ty 3/ 33/ </ <! !
(1{og.,}) :Zl,,j,(ko,ko) /d X &K 15 (%) oy (X K)
J
=Y i (E07E6> <¢z/_p/ ; 1j1> ; 47
Jt '
e., the inner product of the incident Gaussian beam with the

scattering mutual intensities /;, times the degrees-of-spatial cross-
correlations ;.
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S4.4.0.1. Relation to the classical BSDF Let

i) -{
fij; (R,E’) =f (R,f(’) , (49)

if j=/ and X €S;

. (43)
otherwise

where §; C R is the scattering matter (e.g., a triangle), and f; is the
classical BSDF (with the cosine foreshortening factored in). /;; =0
(for j # 1) implies that no cross-interaction interference arises (a
consequence of classicality). Then, Eq. (50) becomes

(H{on.,}) =X, 7 (Ko. Ko ) (057 » 111) (50)

where the inner product is now the integration of the incident Gaus-
sian beam over the triangle, multiplied by the classical BSDF f.

S4.5. Importance sampling strategy

We detail the general importance sampling strategy for the multi-
material wave-optical interactions, that was presented in the paper.
We assume that an importance sampling strategy for each direct
term K (i.e., for a single material) is given to us. Then, note that

VjlK;=0—K;=0 (51)
=/ 7o/
and V%% kK, KSN):].Kh (52)

where N is the count of interactions K, and Eq. (52) is derived
via application of the Cauchy—Schwarz inequality to (¥./;)(¥h)*
in Eq. (40). Hence, the incoherent (interference-neglecting) sum of
direct terms ) ; K serves as a proposal distributions for the aggre-
gated kernel K.

Let 7 be the interaction operator that corresponds to the cross-
interaction kernel K ;. Our importance sampling strategy is:

1. Draw a wavevector K by importance sampling the incoherent
sum of direct terms Y. ; 7 ;.

2. Let Iy, be the powers in };7;;{0} and the aggregated term
T{0}, respectively, for sampled k.

3. Rejection sample [CRWO04]:

a. Draw uniform u € [0, 1).
b. If u < I/(NI) accept k, otherwise return to step 1.

That is, we importance sample from the direct terms (similar to
sampling from classical BSDFs in computer graphics), and rejec-
tion sample in order to account for the cross-material interference.
The number of iterations of step 3 above is, on average, N: the
count of different interactions that fall within the Gaussian beam’s
footprint. Correctness is ensured by Eqs. (51) and (52).

The strategy above is presented in its utmost generality, and is
designed to work with arbitrary operators 7 and 7.

S5. The Weakly-Local Path Integral

Our weakly-local generalization of the path integral takes the form

1= [ s(R)du(R) . 53)

As in the paper, R = RgR| ... Ry is a generalized path defined as
sequence of bounded regions R; C R>. The set Q; of all bounded
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subsets R; C R is trivially (Lebesgue) measurable, therefore the
Cartesian product

Qk:QqX...XQq (54)
——
k times

is trivially measurable, and the set of all possible generalized paths
R of all finite lengths &, viz.

Q= Jx% (55)
k

is a measurable set, and the measure u on  is the appropriate prod-
uct measure. g is the path contribution function, written in operator
form:

8(R) =WTR,_, R, R, TR,_3—+R, 1R, -

TR)—R, »R,LR,—R, (Ro) ,  (56)
where T are generic transport operators, L is a sourcing function
and W is a generic measurement operator that must yield a non-
negative scalar.

S5.0.1. Local Path Sampling
Monte Carlo integration of Eq. (53) is identical to the classical case:

8(Rn)
1 Pn

M=

I~

(57

n

A strength of our path integral formulation is that the interme-
diate distributions that are sourced via L, transformed via 7 and
then measured via W are not directly needed to construct a path:
the sequence of regions R; defines the path. Only once a path
Ry =RgR; ... Ry is constructed, the light transport over that path
needs to be evaluated via g(Ry).

Without explicitly defining the co-domain of L, we may define
an intensity operator:

Ip =Z{Lr,—r,(Ro)}, (58)

which quantifies the non-negative power contained in the sourced
distribution Lg,—R, (Ro), given Ro, Ry, regardless of the analytic
nature of Lg, R, (Ro) and the used optical formalism. Local path
sampling then proceeds classically: Sample the initial pair of re-
gions Rg and Ry; in practice, in our formalism this is done by sam-
pling a minimum-uncertainty (p = 0 in Eq. (20)) Gaussian beam
from the source (fixing Rg), sampling an initial wavevector K from
the sensor’s sensitivity function, and then wave tracing (as in the
paper) in order to construct the next region Rj.

After sampling the initial two regions, we need to sample Rj.
This is done by considering the intensity of the scattered distribu-
tion:

I =Z{Try—R,—R,LR,—R, (Ro)} . (59)

For Fraunhofer materials (Subsection S4.4), I only depends on di-
rection from R; to the (unknown) next region R,. Local path sam-
pling then samples a new direction, and the region R; is constructed
via wave tracing, as before. For example, if the material at Ry is just
a perfect mirror, then /; is a Dirac as function of direction; if the
material is a moderately-rough surface, then the angular distribu-
tion of power is proportional to a surface scattering theory (we use
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SPM surfaces)—how the surface transforms and mutates the light
distribution is not relevant, only the total power in the scattered dis-
tribution. When multiple materials fall within an interaction region,
our general importance sampling strategy, Subsection S4.5, is used.
The process repeats recursively in order to sample a complete path
R.

The above summarizes conceptually the sampling approach
taken in Subsection S4.3: only the powers carried by the Gaus-
sian beams, defined in Eq. (41), are considered for importance sam-
pling and path construction. The rest of the properties of the Gaus-
sian beams ¢ are deduced geometrically via wave tracing. For non-
Fraunhofer materials, the process is more involved, the powers /;
may now be functions of additional parameters, often the distance
to next region. This happens with UTD-based diffraction methods,
and importance sampling strategies for non-Fraunhofer materials
are left for future work.

S$5.0.2. Non-Negativity of Measurement

The non-negativity of the measurement function g depends on
the light transport formalism. In our case, we work in the space-
frequency (Wigner) space, therefore the measurement operator W
is the inner product in Wigner space, as in the paper:

Wor = (Ws, 0g) (60)

where W; is the space-frequency sensitivity distribution of the sen-
sor. The non-negativity of this measurement operator is an imme-
diate consequence of Moyal’s formula [Tor05].

For other formalisms, a different measurement is defined. For
example, if the distributions ¢ are wavefunctions (electric fields),
then the measurement becomes

Wor = (ws , 00, 61)

where Y is the sensor’s response function (its Wigner distribution
is Wy), and non negativity is explicit.

S6. Implementation Details

S6.0.0.1. Traversal We use an 8-wide SAH-based BVH for
traversal [EKS25]. The SAH cost ratio is skewed compared with
ray tracing since the (AVX2 vectorized) 8-wide traversal is signif-
icantly faster than the expensive (exact and watertight) elliptical
cone—triangle intersection tests. Thus, we use a large SAH cost
ratio which tends to create deeper trees. The BVH also supports
hybrid workloads—cone and ray tracing—which is important for
ballistic propagation. Ray tracing is fully vectorized (both traversal
and intersection tests) as well.

Some cone tracing-specific BVH optimizations are done. One
example is full-subtree traversal: if an elliptical cone fully contains
a node, full intersection tests are not needed (we know the triangles
are contained in the cone); instead the cone distances to all the tri-
angles in the entire subtree are computed in a vectorized manner,
and the triangles that fall within the intersection frustum are added
to the list of intersected primitives. This gives a major speed-up in
cases where cones fall upon fine geometric details.

S6.0.0.2. Spectral rendering Our renderer targets a wide range
of applications across the EM spectrum. Each emitter and sensor
define their spectral emission or sensitivity distributions. A va-
riety of spectral distributions are supported: discrete, Dirac, uni-
form, piecewise linear, or Gaussian. Some more specialized ana-
Iytic spectra, like blackbody emission, or ITU [ITU23] provided
refractive indices are defined. Distributions can also be loaded from
databases: e.g., XYZ sensitivity spectra for optical rendering, dif-
ferent emitter profiles, or index-of-refraction curves for different
materials.

For each emitter—sensor pair, the product of their emission and
sensitivity spectra is numerically integrated and is used for spectral
importance sampling (and MIS). Each path only carries a single
spectral sample; we do not use fixed bins, as that suffers from spec-
tral aliasing, nor do we carry several spectral samples over a path,
as the interactions that are hardest to spectrally integrate (dispersion
and diffractions) are often dispersive anyway.

Some data can also be loaded from an image (texture); this is
mostly relevant for optical applications. The image data is upsam-
pled from RGB to spectral.

S6.0.0.3. Materials We support a limited set of materials.
Surfaces use the small perturbation method (SPM) theory, are
wavelength dependent, and provide simple support for slight-to-
moderately rough surfaces. The surface profile is defined via its
power spectral density, and can be a Dirac (perfectly specular),
Gaussian or fractal (also known as the K-Correlation model) dis-
tribution. Of course, due to their wavelength dependence, surfaces
that scatter in a rough manner at some spectral range are very
smooth in other spectral ranges. Being statistically-stationary mate-
rials, we assume that no interference between such surfaces arises,
simplifying the implementation. These surfaces also model dielec-
tric interfaces, with transmission.

More targeted materials, like surface models for RF simulations
that also model backscattering, are left for future work.

S6.0.0.4. Diffractions and interactions Every sample is propa-
gated via its elliptical cone, as discussed in the paper, and the ellip-
tical conic envelope fully defines the properties of the underlying
Gaussian beam. Our renderer is polarimetric, and each sample’s
power is quantified via its Stokes parameters vector. Interactions
are naturally formulated via the Mueller-Stokes calculus.

As discussed in the paper, we support two modes of diffractions:
Fraunhofer edge-based diffractions [SRB*24a] for optical appli-
cations, and UTD edge-based diffractions for longer wavelength
simulations. When an elliptical conic envelope intersects geome-
try, we classify and keep track of the edges (according to the cho-
sen diffraction method). For UTD, we limit wedge angles to 160°.
We importance sample a point on the beam’s cross section (with
respect to the cross-sectional Gaussian distribution of intensity);
if that point falls upon a surface, we importance that surface for
the scattering direction; if free-space was sampled, then we im-
portance sample the free-space diffraction operator (i.e., the entire
cross-edge interference, using our importance sampling strategy
in Subsection S4.5). We transform the beam, as in the paper, and
wave trace to the next interaction region. If diffracting edges were
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detected in the previous region, we also evaluate the free-space
diffraction operator (also when surface interactions were sampled).

S6.0.0.5. Polarization and emission The emitters used in this
paper are simple isotropic emitters that are attached to a shape (area
emitters) or simple point emitters. More sophisticated emitters, for
example antenna arrays and non-isotropic antenna radiation pat-
terns, are also left for future work.
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